EDBT: 15th International Conference on Extending Database Technology Mar. 27, 2012 – Berlin, Germany

Shortest-Path Queries for Complex Networks: Exploiting Low Tree-width Outside the Core

Takuya Akiba

(The University of Tokyo)

Christian Sommer

(MIT CSAIL)

Ken-ichi Kawarabayashi

(National Institute of Informatics)

Introduction: Complex Networks

Real World Networks

- Social Networks
- Web Graphs
- Biological Networks
- Technological Networks

Synthetic Models

- Preferential Attachment
- Kronecker Graphs

"Complex Networks"

scale-free, small-world, core-fringe, ...

Introduction: Shortest Paths on Networks

Socially-Sensitive Search

Distance on social networks

Social Network Analysis

Biological Analysis

Shortest-Path Queries for Complex Networks: Exploiting Low Tree-width Outside the Core

Introduction: Shortest Path Queries

- Trivial: Breadth-First Search (BFS)
 - Too slow (for large networks & interactive situations)
- Solution: Precomputing indices
 - 1. Precompute an index
 - 2. Answer queries using the index

- Indexing time
- Index size

- Query time
- Accuracy (for approximate methods)

Introduction: Our Approach

Core-Fringe Structure Tree Decompositions

of Complex Networks

Core Fringe

Dense core + tree-like trails

Introduction: History & Contribution

Introduction: History & Contribution

Introduction: History & Contribution

Introduction: Summary of Experiments

Datasets

Exact TD-Based Method

• Upto 20x faster preprocessing + faster querying, data size, ...

Approx. Hybrid Method

Upto 2x smaller index size + better accuracy, …

Introduction: Outline

Theoretical Contribution

Query Processing for Graphs with Small Tree-Width

Tool to treat tree-like graphs as trees

- 1. Every **vertex** appears at least once.
- 2. Every **edge** is contained in at least one bag

The width of a tree-decomposition ≒How tree-like is it ?

Definition: (Maximum bag size) - 1

Smaller \rightarrow Tree-like \rightarrow Easy

Another Example

Width = 3

Literature	Space	Query Time	Comment
[CZ'00]	$O(w^3 n)$	$O(w^3 \alpha(n))$	α : inverse of Ackermann function
[CZ'00]	$O(w^3 n \log n)$	$O(w^{3})$	
[FK'11]	w(n + o(n)) - w/2) + O(n)	$O(w^2\log^3 w)$	Unweighted, Undirected; Succinct
[Wei'10]	$O(w^2 b)$	$O(w^2 h)$	h: height of TD b: # of bags ($b = O(n)$)
Ours 1	$O(w^2 b)$	$\begin{array}{l} \boldsymbol{O}(\boldsymbol{w}^2 \log \boldsymbol{h}), \\ \boldsymbol{O}(\boldsymbol{w}^2 \log \log \boldsymbol{n}) \end{array}$	
Ours 2	0 (m)	$\boldsymbol{O}(\boldsymbol{w^5}\log^3\boldsymbol{n})$	Linear space

$O(w^2 b)$ Space, $O(w^2 h)$ Time [Wei, SIGMOD'10]

Every path passes LCA bag

Compute the distance:

- 1. s to every vertex in LCA
- 2. Every vertex in LCA to t

$O(w^2 b)$ Space, $O(w^2 h)$ Time [Wei, SIGMOD'10]

Store distance matrix for each bag.

 $O(w^2) \times b$ $= O(w^2b)$ Space

$O(w^2 b)$ Space, $O(w^2 h)$ Time [Wei, SIGMOD'10]

Climb bags conducting dynamic programming $O(w^2) \times O(h) = O(w^2h)$ Time 1 step Num of steps

Example

d(1,4) = d(1,2) + d(2,4) = 1 + 2 = 3

$O(w^2 b)$ Space, $O(w^2 \log h)$ Time

Idea

Directly climb to 2^i th ancestor, $O(w^2 \log h)$ query time

(We omit the detail)

Practical Contribution

Application to Complex Networks: Exact Method

Relaxed Tree Decompositions

- No good tree decompositions for real networks
 - Tree decomposition is a tool for tree-like graphs
 - Complex networks are not tree-like
- However, they have core-fringe structure
 Dense core + tree-like fringe
- **Idea**: Decomposing tree-like fringe using tree Decompositions

Relaxed Tree Decompositions

- Relaxed Tree Decomposition (relaxed width w)
 - One big bag for core
 - Many small bags for fringe (with size at most w + 1)

Preprocessing

Preprocessing

- 1. Tree decomposition heuristically
 - 2. Shortest distance matrices

Vertex Reduction

New bag size $\leq w + 1 \rightarrow$ Relaxed width w

Vertex Reduction

Shortest Distance Matrices

- Trivial: Compute them on original graph
- Our approach: Compute them on reduced graph
 - Reduced graphs are smaller
 - Though some vertices are deleted, actually we can compute all the matrices

Use improved algorithms from the first part

Practical Contribution

Application to Complex Networks: Hybrid Approximate Method

Hybrid Approximation Method

Bottleneck of exact method: root bag R
 Ω(|R|²) time and space

Landmark-based Estimation [Potamias+, CIKM'09]

$$\widetilde{d_G}(s,t) = \min_{u \in D} \{ d_G(s,u) + d_G(u,t) \}$$
(Triangulation)

Simple and practical

Hybrid with landmark-based method

Experimental Evaluation

Real-World Datasets

Exact Method: Preprocessing Time

Exact Method: Index Size & Query TIme

Index Size (MB)

Query Time (µs)

Approximate Method: Space

of Pairs

whose distance was stored

Index Size (MB)

Approximate Method: Accuracy

Wrap Up

- Fast shortest path querying on large networks is useful in many applications
- Core-fringe structure of networks can be exploited by relaxed tree decompositions
- New exact method
 - With better preprocessing, query time and data size
- New hybrid approximate method
 With better data size and accuracy

Shortest-Path Queries for Complex Networks: Exploiting Low Tree-width Outside the Core

Core-fringe structure [Lu00]

Under the RPLG Model,

- 0 < y < 2
 - Dense "core" with diameter at most 3
 - "Tree-like trails" with constant length
- 2 < γ < 4
 - Dense "core"
 - "Tree-like trails"
 - "Middle layer" between them
 - $O(\log n)$ path length

