Shortest-Path Queries for Complex Networks:

Exploiting Low Tree-width Outside the Core

Takuya Akiba

(The University of Tokyo)

Christian Sommer

(MIT CSAIL)
Ken-ichi Kawarabayashi
(National Institute of Informatics)

Introduction: Complex Networks

Real World Networks

- Social Networks
- Web Graphs
- Biological Networks
- Technological Networks

Synthetic Models

- Preferential Attachment
- Kronecker Graphs

"Complex Networks"

 scale-free, small-world, core-fringe, ...
Introduction: Shortest Paths on Networks

Context-Aware Search

Distance on web graphs

Socially-Sensitive Search

Distance on social networks

Social Network Analysis

Biological Analysis

Introduction: Shortest Path Queries

- Trivial: Breadth-First Search (BFS)
- Too slow (for large networks \& interactive situations)
- Solution: Precomputing indices

1. Precompute an index
2. Answer queries using the index

Goal: Good trade-off between

- Indexing time
- Index size
- Query time
- Accuracy (for approximate methods)

Introduction: Our Approach

Core-Fringe Structure

 of Complex Networks
Tree Decompositions

Dense core + tree-like trails

Introduction: History \& Contribution

Practice

Complex Networks

Landmark-based approx. [Potamias+, CIKM'09] [Gubichev+, CIKM'10]

> Symmetry exact [Xiao+, EDBT'09]

TD-based exact [Wei, SIGMOD'10]

Introduction: History \& Contribution

Theory Small Tree-width

$$
O\left(w^{3} \alpha(n)\right), O\left(w^{3}\right)
$$

[Chaudhuri, Zaroliagis. Algorithmica'00]

$$
\begin{aligned}
& O\left(w^{2} \log ^{3} w\right)+\text { Compact } \\
& {[\text { Farzan, Kamali. ICALP'11] }}
\end{aligned}
$$

Practice

Complex Networks

Landmark-based approx. [Potamias+, CIKM'09] [Gubichev+, CIKM'10]

Symmetry exact [Xiao+, EDBT'09]

TD-based exact [Wei, SIGMOD'10]

Introduction: History \& Contribution

Introduction: Summary of Experiments

Datasets

Exact TD-Based Method

- Upto 20x faster preprocessing + faster querying, data size, ...

Approx. Hybrid Method

- Upto $2 x$ smaller index size + better accuracy, ...

Introduction: Outline

Theory

Tree decompositions
$O\left(w^{3} \alpha(n)\right), O\left(w^{3}\right)$
[Chaudhuri, Zaroliagis. Algorithmica'00]

$$
\begin{gathered}
O\left(w^{2} \log ^{3} w\right)+\text { Compact } \\
{[\text { Farzan, Kamali. ICALP'11] }}
\end{gathered}
$$

Practice

Complex Networks

Landmark-based approx.
[Potamias+, CIKM'09]
[Gubichev+, CIKM'10]

Symmetry exact [Xiao+, EDBT'09]

TD-based exact
[Wei, SIGMOD'10]

TD-based exact
(2)

Theoretical Contribution

Query Processing for Graphs with Small Tree-Width

Tree Decomposition [Robertson, Seymour. '84]

Tool to treat tree-like graphs as trees

2. Every edge is contained in at least one bag
3. Every vertex induces a subtree

Width [Robertson, Seymour. '84]

The width of a tree-decomposition ЭHow tree-like is it?

Definition: (Maximum bag size) - 1

$$
\text { Smaller } \rightarrow \text { Tree-like } \rightarrow \text { Easy }
$$

Another Example

Width $=3$

Methods for tree decompositions with width w

Literature	Space	Query Time	Comment
[CZ'00]	$O\left(w^{3} n\right)$	$O\left(w^{3} \alpha(n)\right)$	α : inverse of Ackermann function
[CZ'00]	$O\left(w^{3} n \log n\right)$	$O\left(w^{3}\right)$	
[FK'11]	$\begin{aligned} & w(n+o(n) \\ & -w / 2)+O(n) \end{aligned}$	$O\left(w^{2} \log ^{3} w\right)$	Unweighted, Undirected; Succinct
[Wei'10]	$O\left(w^{2} b\right)$	$O\left(w^{2} h\right)$	h : height of TD $b: \#$ of bags $(b=O(n))$
Ours 1	$O\left(w^{2} b\right)$	$\begin{gathered} \boldsymbol{O}\left(\boldsymbol{w}^{2} \log \boldsymbol{h}\right), \\ \boldsymbol{O}\left(\boldsymbol{w}^{2} \log \log \boldsymbol{n}\right) \end{gathered}$	
Ours 2	$\boldsymbol{O}(\mathrm{m})$	$\boldsymbol{O}\left(\boldsymbol{w}^{5} \log ^{3} \boldsymbol{n}\right)$	Linear space

$O\left(w^{2} b\right)$ Space, $O\left(w^{2} h\right)$ Time [Wei, SIGMOD'10]

Idea

Every path passes LCA bag

Compute the distance: 1. s to every vertex in LCA 2. Every vertex in LCA to t

$O\left(w^{2} b\right)$ Space, $O\left(w^{2} h\right)$ Time [Wei, SIGMOD'10]

Store distance matrix for each bag.

$$
\begin{aligned}
& O\left(w^{2}\right) \times b \\
= & O\left(w^{2} b\right) \text { Space }
\end{aligned}
$$

$O\left(w^{2} b\right)$ Space, $O\left(w^{2} h\right)$ Time [Wei, SIGMOD'10]

Climb bags conducting dynamic programming

$$
\underset{\substack{\text { step }}}{\left(w^{2}\right) \times O(h)}=O\left(w^{2} h\right) \text { Time of steps }
$$

Example

Original Graph

$O\left(w^{2} b\right)$ Space, $O\left(w^{2} \log h\right)$ Time

Idea

Directly climb to 2^{i} th ancestor, $O\left(w^{2} \log h\right)$ query time
(We omit the detail)

Practical Contribution Application to Complex Networks: Exact Method

Relaxed Tree Decompositions

- No good tree decompositions for real networks
- Tree decomposition is a tool for tree-like graphs
- Complex networks are not tree-like
- However, they have core-fringe structure
- Dense core + tree-like fringe
- Idea: Decomposing tree-like fringe using tree Decompositions

Relaxed Tree Decompositions

- Relaxed Tree Decomposition (relaxed width w)
- One big bag for core
- Many small bags for fringe (with size at most $w+1$)

Our Method

Preprocessing

Preprocessing
 1. Tree decomposition heuristically 2. Shortest distance matrices

Vertex Reduction

For any $v \in V \mid \operatorname{deg}(v) \leq w$
 (w : parameter)

New bag size $\leq w+1 \rightarrow$ Relaxed width w

Vertex Reduction

Shortest Distance Matrices

- Trivial: Compute them on original graph
- Our approach: Compute them on reduced graph
- Reduced graphs are smaller
- Though some vertices are deleted, actually we can compute all the matrices

SPQ method using TD

Query Processing

Dynamic programming climbing tree

Use improved algorithms from the first part

Practical Contribution Application to Complex Networks: Hybrid Approximate Method

Hybrid Approximation Method

- Bottleneck of exact method: root bag R
- $\Omega\left(|R|^{2}\right)$ time and space

Other existing method

Tree decomposition

Landmark-based Estimation [Potamias+, CIKM'09]

$$
\begin{gathered}
\left.\widetilde{d_{G}}(s, t)=\min _{\substack{u \in D \\
\text { (Triangulation) }}} d_{G}(s, u)+d_{G}(u, t)\right\} \\
\hline
\end{gathered}
$$

Simple and practical

Hybrid with landmark-based method

$\tilde{d}(x, y)$
$=\min _{s \in S, t \in T}\{d(x, s)+\tilde{d}(s, t)+d(t, y)\} \quad \boldsymbol{o}\left(\boldsymbol{w}^{2} \boldsymbol{h}+\boldsymbol{w}^{2}|\boldsymbol{D}|\right)$ time
$=\min _{u \in D}\left\{\min _{s \in S}\{d(x, s)+d(s, u)\}+\min _{t \in T}\{d(u, t)+d(t, y)\}\right\}$

$$
O\left(w^{2} h+w|D|\right) \text { time }
$$

Experimental Evaluation

Real-World Datasets

Exact methods Approx. methods

Exact Method: Preprocessing Time

Exact Method: Index Size \& Query Tlme

9x Smaller

Query Time ($\mu \mathrm{s}$)
■ Ours ■TEDI

3x Faster

Approximate Method: Space

\# of Pairs

whose distance was stored

- Hybrid ■ Landmark
 23M edges

Index Size (MB)

$■$ Hybrid ■ Landmarks

2x Smaller

Approximate Method: Accuracy

Flickr

Wrap Up

- Fast shortest path querying on large networks is useful in many applications
- Core-fringe structure of networks can be exploited by relaxed tree decompositions
- New exact method
- With better preprocessing, query time and data size
- New hybrid approximate method
- With better data size and accuracy

Core-fringe structure [Lu00]

Under the RPLG Model,

- $0<y<2$
- Dense "core" with diameter at most 3
- "Tree-like trails" with constant length
- $2<y<4$
- Dense "core"
- "Tree-like trails"
- "Middle layer" between them
- $O(\log n)$ path length

