All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing

Christian Sommer csommer@apple.com http://www.chsommer.com

ICALP 2016

Distance Oracle

Graph G=(V, E) n := IVI m := IEI

Preprocessing Algorithm

Preprocessing Time

Data structure for point-to-point *approximate* shortest-path distances

Thorup & Zwick (STOC'01)

Distance Oracle

Space

stretch (α , β) $d(g,t) \le X \le \alpha \cdot d(g,t) + \beta$

Query

Query Time

Space vs. Stretch

Patrascu & Roditty (FOCS 2010)

Ο

4

Thorup & Zwick (STOC 2001)

Abraham & Gavoille (DISC 2011)

Patrascu, Roditty, Thorup (FOCS 2012; sparse)

lpha $\mathbf{5}$ 6 stretch (α, β) $d(g,t) \le X \le \alpha \cdot d(g,t) + \beta$

APASP/Preproces				
Stretch	Time $\tilde{O}(\cdot)$	Space $\tilde{O}(\cdot)$		
$(1,\!2)$	$n^{5/2}$	n^2		
$(1,\!2)$	$n^{7/3}$	n^2		
$(3,\!0)$	n^2	n^2		
$(3,\!0)$	$n^{5/2}$	$n^{3/2}$		
$(3,\!0)$	n^2	$n^{3/2}$		
$(3,\!10)$	$n^{23/12} + m$	$n^{3/2}$		
(2,1)	n^2	n^2		
(2,1)	$n^{8/3}$	$n^{5/3}$		
$(2,\!3)$	n^2	$n^{5/3}$		
(2,1)	poly	$n^{5/3}$		
(2,1)	n^2	$n^{5/3}$		

ssing (Dense Graphs)

- Aingworth, Chekuri, Indyk, Motwani (SODA 1996) Dor, Halperin, Zwick (FOCS 1996)
- Cohen, Zwick (SODA 1997)
- Thorup, Zwick (STOC 2001)
- Baswana, Sen (SODA 2004); B., Kavitha (FOCS 2006)
- Baswana, Gaur, Sen, Upadhyay (ICALP 2008)
- Berman, Kasiviswanathan (WADS 2007)
- Baswana, Goyal, Sen (STACS 2005) (space bound implicit)

Patrascu, Roditty (FOCS 2010)

NEW

balls (all nodes closer than nearest landmark, expected size 1/p; use ball or triangulate) intersecting balls, expected size $1/p^2$)

APASP/Preproces				
Stretch	Time $\tilde{O}(\cdot)$	Space $\tilde{O}(\cdot)$		
$(1,\!2)$	$n^{5/2}$	n^2		
$(1,\!2)$	$n^{7/3}$	n^2		
$(3,\!0)$	n^2	n^2		
$(3,\!0)$	$n^{5/2}$	$n^{3/2}$		
$(3,\!0)$	n^2	$n^{3/2}$		
$(3,\!10)$	$n^{23/12} + m$	$n^{3/2}$		
(2,1)	n^2	n^2		
(2, 1)	$n^{8/3}$	$n^{5/3}$		
$(2,\!3)$	n^2	$n^{5/3}$		
(2,1)	poly	$n^{5/3}$		
(2,1)	n^2	$n^{5/3}$		

ssing (Dense Graphs)

- Aingworth, Chekuri, Indyk, Motwani (SODA 1996) Dor, Halperin, Zwick (FOCS 1996)
- Cohen, Zwick (SODA 1997)
- Thorup, Zwick (STOC 2001)
- Baswana, Sen (SODA 2004); B., Kavitha (FOCS 2006)
- Baswana, Gaur, Sen, Upadhyay (ICALP 2008)
- Berman, Kasiviswanathan (WADS 2007)
- Baswana, Goyal, Sen (STACS 2005) (space bound implicit)

Patrascu, Roditty (FOCS 2010)

NEW

Dominating Sets each node or a neighbor is in the dominating set

Aingworth, Chekuri, Indyk, Motwani (SODA 1996)

Dominating Set for High-Degree Nodes $deg(v) > \delta$

Size: $\sim n/\delta$

How to exploit Dominating Sets

for $\delta = n, n/2, n/4, ..., n/2^i, ...$ High-Degree Nodes $deq(v) > \delta$ Dominating Set, size $\sim n / \delta$

BFS Tree from each *dominator* in low-degree graph $deg(v) < 2\delta$

store distances to all dominators nearest dominator: landmark

Berman, Kasiviswanathan (WADS 2007)

How to exploit Dominating Sets

for $\delta = n, n/2, n/4, ..., n/2^i, ...$ $High-Degree Nodes <math>deg(v) > \delta$ Dominating Set, size ~ n / δ

BFS Tree from each *dominator* in low-degree graph $deg(v) < 2\delta$

store distances to all dominators nearest dominator: *landmark*

Berman, Kasiviswanathan (WADS 2007)

for $\delta = n, n/2, n/4, ..., n/2^i, ...$ High-Degree Nodes $deq(v) > \delta$ Dominating Set, size $\sim n / \delta$ BFS Tree from each *dominator*

in low-degree graph $deg(v) < 2\delta$

store distances to all dominators nearest dominator: landmark VIS)

D(u)d:=d(g,t)=x+(+y)< x+1 .* S $WLOG x \le y$ triangulate via L(g) $d(s, L(s), t) \le 2(x+1) + x + |+y| \le 2d+1$

log n levels for $\delta = n, n/2, n/4, ..., n/2^{i}, ...$ High-Degree Nodes $deq(v) > \delta$ Dominating Set, size ~ n / δ BFS Tree from each *dominator* in low-degree graph $deg(v) < 2\delta$

store distances to all dominators nearest dominator: landmark

can't afford to query all log n levels but don't know deg(uv)

time $m + n\delta$

$n \cdot \delta$ edges, hence time n^2

 n^2/δ space

stop at $\delta = n^{1/3}$ handle remaining sparse graph separately Baswana, Goyal, Sen, 2005

store distances to all dominators nearest dominator: *landmark*

can't afford to query all log n levels but don't know deg(uv) *Tight.* (Abboud and Bodwin, STOC 2016)

Spanner (Woodruff, IGALP 2010) Always include (n^{4/3}) dges of (6) spanner

Portal Selection

Landmark at level $n/2^i$ is a *portal* for g

if it is *closer* than all landmarks at levels j < i. Keep neare t 3 portals per node.

Landmark at level $n/2^i$ is a *portal* for g*if* it is *closer* than all landmarks at levels *j* < *i*.

i > j means that the BFS from $L^{i}(g)$ runs in a subgraph of the BFS from $L^{j}(g)$

better to triangulate via U(s)unless $d(g, L^{i}(g)) < d(g, L^{j}(g))$

Portal Selection

lj(g)

triangulate via Lj(g) $d(s, U(s), t) \le 2(x+1) + x + |+y| \le 2d+|$

Landmark at level $n/2^i$ is a *portal* for g*if* it is *closer* than all landmarks at levels *j* < *i*.

If the best $L^{j}(g)$ is *not* among the portals, it must be *far* away: $d(g,U(g)) \ge d(g,Q^{O}(g)) + 3$

$\beta/2 = 3$ Portals

5 x-2

 $\leq \chi + [$

triangulate via $P^{0}(g)$ $J(g) = d(g, P^{0}(g), t) \le 2((-2) + x + 1 + (-1+6) \le 2d + 1$

Preprocessing

compute (1,6) spanner [Woodruff] for $\delta = n, n/2, n/4, ..., n/2, ... n$ High-Degree Nodes $deq(v) > \delta$ Dominating Set of size n/δ BFS Tree from each *dominator* in low-degree graph $deg(v) < 2\delta$ plus edges of spanner store distances to all dominators nearest dominator: landmark for each node: nearest 3 portals 1/3 compute oracle for $deg(v) < 2n^{"}$ graph [Baswana, Goyal, Sen]

Query d(s,t)

return min among

6 triangulations via top 3 portalsand estimate from sparse oracle

APASP/Preproces				
	Stretch	Time $\tilde{O}(\cdot)$	Space $\tilde{O}(\cdot)$	
	$(1,\!2)$	$n^{5/2}$	n^2	
	$(1,\!2)$	$n^{7/3}$	n^2	
	$(3,\!0)$	n^2	n^2	
	$(3,\!0)$	$n^{5/2}$	$n^{3/2}$	
	$(3,\!0)$	n^2	$n^{3/2}$	
	$(3,\!10)$	$n^{23/12} + m$	$n^{3/2}$	
2	, (2, 1)	n^2	n^2	
	(2,1)	n ^{8/3} mn ^{2/3}	$n^{5/3}$	
	$(2,\!3)$	n^2	$n^{5/3}$	
	$(2,\!1)$	poly	$n^{5/3}$	
	(2,1)	n^2	$n^{5/3}$	

ssing (Dense Graphs) Aingworth, Chekuri, Indyk, Motwani (SODA 1996) Dor, Halperin, Zwick (FOCS 1996) Cohen, Zwick (SODA 1997) Thorup, Zwick (STOC 2001) Baswana, Sen (SODA 2004); B., Kavitha (FOCS 2006) Baswana, Gaur, Sen, Upadhyay (ICALP 2008) Berman, Kasiviswanathan (WADS 2007) Baswana, Goyal, Sen (STACS 2005) (space bound implicit) Thanks! Patrascu, Roditty (FOCS 2010) Grazie!

NEW

