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Shortest disjoint paths problemShortest disjoint paths problem
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length function l on the edge set
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 total length: Σ l(Pi ) (Min-Sum Problem)
 length of the longest path:  max l(Pi )

(Mi M P bl )(Min-Max Problem)
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Our focusOur focus
Algorithms for restricted instances of 
the shortest disjoint paths problemthe shortest disjoint paths problem



Our contributionsOur contributions
Mi S P bl Min-Sum Problem
Poly.-time algorithm for
 k = 2, planar, all terminals are on at most two faces
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Min Ma Problem (k 2) Min-Max Problem (k=2)
 tree-width ≥ 3 : NP-hard
 tree-width ≤ 2 : Poly.-time algorithm
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 k = 2                      OPEN
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 k = 3, planar, all terminals are on one face
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Three terminals on one faceThree terminals on one face
Theorem (Our results)

k = 2, planar graph, 3 terminals are on one face  
Min-Sum disjoint paths can be found in poly.-time

 Technique: reduction to the CS’s result
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We may assume that P2 contains P[ ]
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2 We find three disjoint paths
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Min Max problemMin-Max problem
Input: vertex pairs (s t ) (s t ) length function lInput: vertex pairs (s1, t1),…, (sk, tk)， length function l
Find: vertex disjoint paths P1,…, Pk (Pi : si → ti ) 

minimizing the length of the longest path: max l(P )minimizing the length of the longest path: max l(Pi )

ObservationsObservations
 Most cases are NP-hard (ex. k=2, s1=s2 , t1=t2 )

Our results
When k = 2When k  2, 
 tree-width ≥ 3 : NP-hard

t idth ≤ 2 P l ti l ith tree-width ≤ 2 : Poly.-time algorithm
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Divide given integers w1, w2, ... , wn into two sets 
so that the sum of the numbers in each set is equalso that the sum of the numbers in each set is equal 

C id th f ll i Mi M P bl Consider the following Min-Max Problem

s1 w1 w2 w3 w t1
s1 w1 w2 w3 wn

t2s2 0 0 0 0
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Poly time algorithm (tw ≤ 2 k=2)
 Outerplanar graph easy to solve

Poly.-time algorithm (tw ≤ 2, k=2)
 Outerplanar graph          easy to solve
 consider every partition of the graph
 find a shortest path in each part
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 Outerplanar graph easy to solve

Poly.-time algorithm (tw ≤ 2, k=2)
 Outerplanar graph          easy to solve
 consider every partition of the graph
 find a shortest path in each part

 tw ≤ 2        Reduction to outerplanar case
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SummarySummary
 Min-Sum ProblemMin Sum Problem

Poly.-time algorithm for 
 k = 2 planar all terminals are on at most two faces k = 2, planar, all terminals are on at most two faces
 k = 3, planar, all terminals are on one face

Mi M P bl (k 2) Min-Max Problem (k=2)
 tree-width ≥ 3 : NP-hard
 tree-width ≤ 2 : Poly.-time algorithm

 Many Open Problems
ex Min Sum problem in general graphs for fixed kex. Min-Sum problem in   general   graphs for fixed k
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