On Shortest Disjoint Paths in Planar Graphs

Yusuke Kobayashi (University of Tokyo) Christian Sommer (University of Tokyo)

The 20th International Symposium on Algorithms and Computation Dec 16, 2009

Disjoint paths problem

- Given vertex pairs $(s_1, t_1), \dots, (s_k, t_k)$ Find vertex disjoint paths P_1, \dots, P_k $(P_i : s_i \rightarrow t_i)$
- Many applications (ex. VLSI layout, wireless networks)
- Many variations

Disjoint paths problem

- Given vertex pairs $(s_1, t_1), \dots, (s_k, t_k)$ Find vertex disjoint paths P_1, \dots, P_k $(P_i : s_i \rightarrow t_i)$
- Many applications (ex. VLSI layout, wireless networks)
- Many variations
- general $k \implies NP$ -hard (Karp, 1975)
- fixed k \Rightarrow Poly.-time (Robertson-Seymour, 1995)

Shortest disjoint paths problem

Input: vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$

length function *l* on the edge set

Find: vertex disjoint paths P_1, \ldots, P_k $(P_i : s_i \rightarrow t_i)$

minimizing an objective function

total length: $\Sigma l(P_i)$ (Min-Sum Problem)
length of the longest path: $\max l(P_i)$ (Min-Max Problem)

Shortest disjoint paths problem

Input: vertex pairs $(s_1, t_1), \ldots, (s_k, t_k)$

length function *l* on the edge set

Find: vertex disjoint paths P_1, \ldots, P_k $(P_i : s_i \rightarrow t_i)$

minimizing an objective function

total length: $\sum l(P_i)$ (Min-Sum Problem)
length of the longest path: $\max l(P_i)$ (Min-Max Problem)

Our focus

Algorithms for restricted instances of the shortest disjoint paths problem

Our contributions

Min-Sum Problem

Poly.-time algorithm for k = 2, planar, all terminals are on at most two faces k = 3, planar, all terminals are on one face

Min-Max Problem (k=2)
 □ tree-width ≥ 3 : NP-hard
 □ tree-width ≤ 2 : Poly.-time algorithm

Our contributions

Min-Sum Problem

Poly.-time algorithm for

k = 2, planar, all terminals are on at most two faces

k = 3, planar, all terminals are on one face

Min-Max Problem (k=2)
 □ tree-width ≥ 3 : NP-hard
 □ tree-width ≤ 2 : Poly.-time algorithm

Min-Sum problem (known results)

Input: vertex pairs $(s_1, t_1), ..., (s_k, t_k)$, length function *l* **Find:** vertex disjoint paths $P_1, ..., P_k$ $(P_i : s_i \rightarrow t_i)$ minimizing the total length: $\sum l(P_i)$

General graphs

- general *k* NP-hard
- fixed k OPEN
- *k* = 2 OPEN

Min-Sum problem (known results)

Input: vertex pairs $(s_1, t_1), ..., (s_k, t_k)$, length function *l* **Find:** vertex disjoint paths $P_1, ..., P_k$ $(P_i : s_i \rightarrow t_i)$ minimizing the total length: $\sum l(P_i)$

General graphs

- general *k* NP-hard
- fixed k OPEN
- *k* = 2 OPEN

Polynomially solvable cases

- Reducible to the min-cost flow problem
- Planar graph, all s_i's are on one face, and all t_i's are on another face
 (Colin de Verdière and Schrijver, 2008)

Polynomially solvable cases (Min-Sum)

- Reducible to the min-cost flow problem
 - > $s_1 = s_2 = ... = s_k$ (and/or) $t_1 = t_2 = ... = t_k$
 - Planar graph, all terminals are on one face, and the ordering is s₁, s₂,..., s_k, t_k,..., t₂, t₁

Polynomially solvable cases (Min-Sum)

- Reducible to the min-cost flow problem
 - > $s_1 = s_2 = ... = s_k$ (and/or) $t_1 = t_2 = ... = t_k$
 - Planar graph, all terminals are on one face, and the ordering is s₁, s₂,..., s_k, t_k,..., t₂, t₁
- Planar graph, all s_i's are on one face, and all t_i's are on another face (Colin de Verdière and Schrijver, 2008)

Polynomially solvable cases (Min-Sum)

- Reducible to the min-cost flow problem
 - > $s_1 = s_2 = ... = s_k$ (and/or) $t_1 = t_2 = ... = t_k$
 - Planar graph, all terminals are on one face, and the ordering is s₁, s₂,..., s_k, t_k,..., t₂, t₁
- Planar graph, all s_i's are on one face, and all t_i's are on another face (Colin de Verdière and Schrijver, 2008)

Our results

- k = 2, planar, all terminals are on at most two faces
- k = 3, planar, all terminals are on one face

Three terminals on one face

Theorem (Our results) -

- k = 2, planar graph, 3 terminals are on one face
 - Min-Sum disjoint paths can be found in poly.-time
- Technique: reduction to the CS's result

- (P_1, P_2) : shortest disjoint paths
 - **P** : shortest path between s_1 and t_2

Three terminals on one face

Theorem (Our results) -

- k = 2, planar graph, 3 terminals are on one face
 - Min-Sum disjoint paths can be found in poly.-time
- Technique: reduction to the CS's result

- (P_1, P_2) : shortest disjoint paths
 - **P** : shortest path between s_1 and t_2
 - *u* : vertex in $P \cap P_1$ closest to t_2
 - v : vertex in $\underline{P^{[u, t^2]}} \cap P_2$ closest to u

Observations

 (P_1, P_2) : shortest disjoint paths

- **P** : shortest path between s_1 and t_2
- *u* : vertex in $P \cap P_1$ closest to t_2
- v: vertex in $P^{[u, t^2]} \cap P_2$ closest to u

- <u>Obs. 1</u> –

Internal vertices of $P^{[u, v]}$ are not used in (P_1, P_2)

<u>Obs. 2</u>

We may assume that P_2 contains $P^{[v, t^2]}$

Observations

 (P_1, P_2) : shortest disjoint paths

- **P** : shortest path between s_1 and t_2
- *u* : vertex in $P \cap P_1$ closest to t_2
- v: vertex in $P^{[u, t^2]} \cap P_2$ closest to u

- <u>Obs. 1</u> —

Internal vertices of $P^{[u, v]}$ are not used in (P_1, P_2)

- <u>Obs. 2</u>

We may assume that P_2 contains $P^{[v, t^2]}$

How can we find (P_1, P_2) ?

P : shortest path between s_1 and t_2 *u*, *v* : fix two candidate vertices

Obs. 1 Internal vertices of $P^{[u, v]}$ are not used in (P_1, P_2)

<u>Obs. 2</u>

We may assume that P_2 contains $P^{[v, t^2]}$

How can we find (P_1, P_2) ?

P : shortest path between s_1 and t_2 *u*, *v* : fix two candidate vertices

1. Remove vertices in $P^{[u, t^2]}$ except for v

2. We find three disjoint paths $Q_1: s_1 \rightarrow u$ $Q_2: t_1 \rightarrow u$ $Q_3: s_2 \rightarrow v$ with minimum total length

How can we find (P_1, P_2) ?

Our contributions

Min-Sum Problem

Poly.-time algorithm for $\Box k = 2$, planar, all terminals are on at most two faces

k = 3, planar, all terminals are on one face

Min-Max Problem (k=2)
 □ tree-width ≥ 3 : NP-hard
 □ tree-width ≤ 2 : Poly.-time algorithm

Min-Max problem

Input: vertex pairs $(s_1, t_1), ..., (s_k, t_k)$, length function *l* **Find:** vertex disjoint paths $P_1, ..., P_k$ $(P_i : s_i \rightarrow t_i)$ minimizing the length of the longest path: max $l(P_i)$

Observations

• Most cases are NP-hard (ex. k=2, $s_1=s_2$, $t_1=t_2$)

Our results

When k = 2,

- tree-width \geq 3 : NP-hard
- tree-width ≤ 2 : Poly.-time algorithm

NP-hardness (tw \geq 3, k=2)

- Reduction from NP-hard problem "Partition"
 - Divide given integers $w_1, w_2, ..., w_n$ into two sets so that the sum of the numbers in each set is equal
- Consider the following Min-Max Problem

NP-hardness (tw \geq 3, k=2)

- Reduction from NP-hard problem "Partition"
 - Divide given integers $w_1, w_2, ..., w_n$ into two sets so that the sum of the numbers in each set is equal
- Consider the following Min-Max Problem

Paths with $l(P_1) = l(P_2)$ exist \triangleleft Partition exists

Poly.-time algorithm (tw $\leq 2, k=2$)

- Outerplanar graph easy to solve
 - consider every partition of the graph
 - □ find a shortest path in each part

Poly.-time algorithm (tw $\leq 2, k=2$)

- Outerplanar graph easy to solve
 - consider every partition of the graph
 - ☐ find a shortest path in each part
- tw $\leq 2 \implies$ Reduction to outerplanar case

Summary

Min-Sum Problem

Poly.-time algorithm for

 $\Box k = 2$, planar, all terminals are on at most two faces

k = 3, planar, all terminals are on one face

Min-Max Problem (k=2)

□ tree-width ≥ 3 : NP-hard

□ tree-width \leq 2 : Poly.-time algorithm

Many Open Problems ex. Min-Sum problem in {general} graphs for fixed k planar }

