
On Shortest Disjoint PathsOn Shortest Disjoint Paths
in Planar GraphsG p

Yusuke Kobayashi (University of Tokyo)
Ch i ti S (U i it f T k)Christian Sommer (University of Tokyo)

Dec 16, 2009

The 20th International Symposium on Algorithms and Computation

Disjoint paths problemDisjoint paths problem
s1

s

t2

t1

s2

Gi t i () () Given vertex pairs (s1, t1),…, (sk, tk)
Find vertex disjoint paths P1,…, Pk (Pi : si → ti)

 Many applications (ex. VLSI layout, wireless networks)
 Many variationsMany variations

Disjoint paths problemDisjoint paths problem
s1

s

t2

t1

s2

Gi t i () () Given vertex pairs (s1, t1),…, (sk, tk)
Find vertex disjoint paths P1,…, Pk (Pi : si → ti)

 Many applications (ex. VLSI layout, wireless networks)
 Many variationsMany variations
 general k NP-hard (Karp, 1975)

 fixed k Poly time (R b t S 1995) fixed k Poly.-time (Robertson-Seymour, 1995)

Shortest disjoint paths problemShortest disjoint paths problem
Input: vertex pairs (s1, t1),…, (sk, tk)Input: vertex pairs (s1, t1),…, (sk, tk)

length function l on the edge set
Find: vertex disjoint paths P1 Pk (Pi : si → ti)Find: vertex disjoint paths P1,…, Pk (Pi : si → ti)

minimizing an objective function

 total length: Σ l(Pi) (Min-Sum Problem)
 length of the longest path: max l(Pi)

(Mi M P bl)(Min-Max Problem)

Shortest disjoint paths problemShortest disjoint paths problem
Input: vertex pairs (s1, t1),…, (sk, tk)Input: vertex pairs (s1, t1),…, (sk, tk)

length function l on the edge set
Find: vertex disjoint paths P1 Pk (Pi : si → ti)Find: vertex disjoint paths P1,…, Pk (Pi : si → ti)

minimizing an objective function

 total length: Σ l(Pi) (Min-Sum Problem)
 length of the longest path: max l(Pi)

(Mi M P bl)(Min-Max Problem)

Our focusOur focus
Algorithms for restricted instances of
the shortest disjoint paths problemthe shortest disjoint paths problem

Our contributionsOur contributions
Mi S P bl Min-Sum Problem
Poly.-time algorithm for
 k = 2, planar, all terminals are on at most two faces
 k = 3, planar, all terminals are on one face

Min Ma Problem (k 2) Min-Max Problem (k=2)
 tree-width ≥ 3 : NP-hard
 tree-width ≤ 2 : Poly.-time algorithm

Our contributionsOur contributions
Mi S P bl Min-Sum Problem
Poly.-time algorithm for
 k = 2, planar, all terminals are on at most two faces
 k = 3, planar, all terminals are on one face

Min Ma Problem (k 2) Min-Max Problem (k=2)
 tree-width ≥ 3 : NP-hard
 tree-width ≤ 2 : Poly.-time algorithm

Min Sum problem (known results)Min-Sum problem (known results)
Input: vertex pairs (s1, t1),…, (sk, tk)， length function lp p (1, 1), , (k, k)， g
Find: vertex disjoint paths P1,…, Pk (Pi : si → ti)

minimizing the total length: Σ l(Pi)minimizing the total length: Σ l(Pi)

General graphs
 general k NP-hard
 fixed k OPEN
 k = 2 OPEN

Min Sum problem (known results)Min-Sum problem (known results)
Input: vertex pairs (s1, t1),…, (sk, tk)， length function lp p (1, 1), , (k, k)， g
Find: vertex disjoint paths P1,…, Pk (Pi : si → ti)

minimizing the total length: Σ l(Pi)minimizing the total length: Σ l(Pi)

General graphs
 general k NP-hard
 fixed k OPEN

Polynomially solvable cases

 k = 2 OPEN

y y
 Reducible to the min-cost flow problem
 Planar graph, all si’s are on one face, and all ti’s are onPlanar graph, all si s are on one face, and all ti s are on

another face (Colin de Verdière and Schrijver, 2008)

Polynomially solvable cases (Min-Sum)Polynomially solvable cases (Min-Sum)

 Reducible to the min-cost flow problem
 s1=s2=...=sk (and/or) t1=t2=...=tk

 Planar graph, all terminals are on one face, and the
ordering is s1, s2,..., sk, tk,..., t2, t1

s3

s2

s1 s1s2
t2

t1

t
s3

s

s s3 t3s
t

Paths are internally
vertex disjoint

sk sk tk

Planarvertex-disjoint

Polynomially solvable cases (Min-Sum)Polynomially solvable cases (Min-Sum)

 Reducible to the min-cost flow problem
 s1=s2=...=sk (and/or) t1=t2=...=tk

 Planar graph, all terminals are on one face, and the
ordering is s1, s2,..., sk, tk,..., t2, t1

 Planar graph, all si’s are on one face, and all ti’sg p i i
are on another face

t1t2 t

(Colin de Verdière and Schrijver, 2008)

tk

s1s2
s

sk

t3

s3

Planar

Polynomially solvable cases (Min-Sum)Polynomially solvable cases (Min-Sum)

 Reducible to the min-cost flow problem
 s1=s2=...=sk (and/or) t1=t2=...=tk

 Planar graph, all terminals are on one face, and the
ordering is s1, s2,..., sk, tk,..., t2, t1

 Planar graph, all si’s are on one face, and all ti’sg p i i
are on another face (Colin de Verdière and Schrijver, 2008)

O lt
 k = 2, planar, all terminals are on at most two faces

Our results

 k = 3, planar, all terminals are on one face

 k = 2, planar, all terminals are on at most two faces
t1st2sOne face t1s1

s2 t2

2s1

s2
t1

One face

tt

s2 t2s2

trivially infeasible min-cost flow

Two faces

t

s1 s2

t1

t1s1

s2

t2

t1s1

t2
t2

s2
s2

Colin de Verdière-Schrijver Our results

 k = 2, planar, all terminals are on at most two faces
t1st2sOne face t1s1

s2 t2

2s1

s2
t1

One face

tt

s2 t2s2

trivially infeasible min-cost flow

Two faces

t

s1 s2

t1

t1s1

s2

t2

t1s1

t2
t2

s2
s2

Colin de Verdière-Schrijver Our results

 k = 3, planar, all terminals are on one face
t1s1t2s1 s1 t11

s t3

2s1

t3

s2
t2t1s3

s1

t3

s3t2

1

s3
t3s2

t3

trivially infeasible min-cost flow

s2
t3

Our result

Three terminals on one faceThree terminals on one face
Theorem (Our results)

k = 2, planar graph, 3 terminals are on one face
Min-Sum disjoint paths can be found in poly.-time

 Technique: reduction to the CS’s result

t1
s1

P P P : shortest path between s and t
(P1, P2) : shortest disjoint paths

P P1u

v

P : shortest path between s1 and t2

t2

P2

s2

Three terminals on one face
Theorem (Our results)

Three terminals on one face

k = 2, planar graph, 3 terminals are on one face
Min-Sum disjoint paths can be found in poly.-time

 Technique: reduction to the CS’s result

t1
s1

P P P : shortest path between s and t
(P1, P2) : shortest disjoint paths

P P1u

v

P : shortest path between s1 and t2

u : vertex in P ∩P1 closest to t2

v : vertex in P[u, t2]∩P closest to ut2

P2

v : vertex in P[u, t2]∩P2 closest to u

subpath of P
b t ds2 between u and t2

Observations
t1

s1 (P P) : shortest disjoint paths

Observations

1

P P1u

v

P : shortest path between s1 and t2

(P1, P2) : shortest disjoint paths

u : vertex in P ∩P closest to t
t2

P

v u : vertex in P ∩P1 closest to t2

v : vertex in P[u, t2]∩P2 closest to u

s2

P2

Internal vertices of P[u, v] are not used in (P1, P2)
Obs. 1

We may assume that P2 contains P[v, t2]

Obs. 2
We may assume that P2 contains P[]

Observations
t1

s1 (P P) : shortest disjoint paths

Observations

1

P P1u

v

P : shortest path between s1 and t2

(P1, P2) : shortest disjoint paths

u : vertex in P ∩P closest to t

P

v u : vertex in P ∩P1 closest to t2

v : vertex in P[u, t2]∩P2 closest to ut2

s2

P2

Internal vertices of P[u, v] are not used in (P1, P2)
Obs. 1

We may assume that P2 contains P[v, t2]

Obs. 2
We may assume that P2 contains P[]

How can we find (P1 P2) ?

t1
s1

How can we find (P1, P2) ?

1

P u

v

P : shortest path between s1 and t2

u v : fix two candidate verticesv u, v : fix two candidate vertices
t2

s2

Internal vertices of P[u, v] are not used in (P1, P2)
Obs. 1

We may assume that P2 contains P[v, t2]

Obs. 2
We may assume that P2 contains P[]

How can we find (P1 P2) ?

t1
s1

How can we find (P1, P2) ?

1

P u

v

P : shortest path between s1 and t2

u v : fix two candidate verticesv u, v : fix two candidate vertices
t2

s2

2 We find three disjoint paths

1. Remove vertices in P[u, t2] except for v

2. We find three disjoint paths
Q1 : s1 → u Q2 : t1 → u Q3 : s2 → v

with minimum total lengthwith minimum total length

How can we find (P1 P2) ?

t1
s1

How can we find (P1, P2) ?
Q1 1

u

v

P : shortest path between s1 and t2

u v : fix two candidate vertices

Q2

v u, v : fix two candidate vertices
t2Q3 at most |V|2 possibilities

Algorithm of
Colin de Verdière

d S h ij

s2

and Schrijver

2 We find three disjoint paths

1. Remove vertices in P[u, t2] except for v
t2 tk

t1

2. We find three disjoint paths
Q1 : s1 → u Q2 : t1 → u Q3 : s2 → v

with minimum total length t3

s1s2

s3
sk

with minimum total length 3

Our contributionsOur contributions
Mi S P bl Min-Sum Problem
Poly.-time algorithm for
 k = 2, planar, all terminals are on at most two faces
 k = 3, planar, all terminals are on one face

Min Ma Problem (k 2) Min-Max Problem (k=2)
 tree-width ≥ 3 : NP-hard
 tree-width ≤ 2 : Poly.-time algorithm

Min Max problemMin-Max problem
Input: vertex pairs (s t) (s t) length function lInput: vertex pairs (s1, t1),…, (sk, tk)， length function l
Find: vertex disjoint paths P1,…, Pk (Pi : si → ti)

minimizing the length of the longest path: max l(P)minimizing the length of the longest path: max l(Pi)

ObservationsObservations
 Most cases are NP-hard (ex. k=2, s1=s2 , t1=t2)

Our results
When k = 2When k 2,
 tree-width ≥ 3 : NP-hard

t idth ≤ 2 P l ti l ith tree-width ≤ 2 : Poly.-time algorithm

NP-hardness (tw ≥ 3 k=2)NP-hardness (tw ≥ 3, k=2)
 Reduction from NP-hard problem “Partition” Reduction from NP hard problem Partition

Divide given integers w1, w2, ... , wn into two sets
so that the sum of the numbers in each set is equalso that the sum of the numbers in each set is equal

C id th f ll i Mi M P bl Consider the following Min-Max Problem

s1 w1 w2 w3 w t1
s1 w1 w2 w3 wn

t2s2 0 0 0 0

NP-hardness (tw ≥ 3 k=2)NP-hardness (tw ≥ 3, k=2)
 Reduction from NP-hard problem “Partition” Reduction from NP hard problem Partition

Divide given integers w1, w2, ... , wn into two sets
so that the sum of the numbers in each set is equalso that the sum of the numbers in each set is equal

C id th f ll i Mi M P bl Consider the following Min-Max Problem

s1 w1 w2 w3 w t1
s1 w1 w2 w3 wn

t2s2 0 0 0 0

P th ith l() l() i tPaths with l(P1) = l(P2) exist Partition exists

Poly time algorithm (tw ≤ 2 k=2)
 Outerplanar graph easy to solve

Poly.-time algorithm (tw ≤ 2, k=2)
 Outerplanar graph easy to solve
 consider every partition of the graph
 find a shortest path in each part

s1 t11 1

t2s2
t2

s1 t1 s t1 s t1s1 1

t

s1 t1

t

s1 t1

ts2
t2 s2

t2 s2
t2

Poly time algorithm (tw ≤ 2 k=2)
 Outerplanar graph easy to solve

Poly.-time algorithm (tw ≤ 2, k=2)
 Outerplanar graph easy to solve
 consider every partition of the graph
 find a shortest path in each part

 tw ≤ 2 Reduction to outerplanar case

s1 t1

ex.
s1 t1

u u

s2
t2 s2

t2v vv
length of
shortest u-v path

SummarySummary
 Min-Sum ProblemMin Sum Problem

Poly.-time algorithm for
 k = 2 planar all terminals are on at most two faces k = 2, planar, all terminals are on at most two faces
 k = 3, planar, all terminals are on one face

Mi M P bl (k 2) Min-Max Problem (k=2)
 tree-width ≥ 3 : NP-hard
 tree-width ≤ 2 : Poly.-time algorithm

 Many Open Problems
ex Min Sum problem in general graphs for fixed kex. Min-Sum problem in general graphs for fixed k

planar

