On Shortest Disjoint Paths in Planar Graphs

Yusuke Kobayashi (University of Tokyo) Christian Sommer (University of Tokyo)

The 20th International Symposium on Algorithms and Computation

Disjoint paths problem

- Given vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$

Find vertex disjoint paths $P_{1}, \ldots, P_{k} \quad\left(P_{i}: s_{i} \rightarrow t_{i}\right)$

- Many applications (ex. VLSI layout, wireless networks)
- Many variations

Disjoint paths problem

- Given vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$

Find vertex disjoint paths $P_{1}, \ldots, P_{k} \quad\left(P_{i}: s_{i} \rightarrow t_{i}\right)$

- Many applications (ex. VLSI layout, wireless networks)
- Many variations
- general $k \Rightarrow$ NP-hard (Karp, 1975)
- fixed $k \quad \neg$ Poly.-time (Robertson-Seymour, 1995)

Shortest disjoint paths problem

Input: vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$
length function l on the edge set
Find: vertex disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$ minimizing an objective function
$>$ total length: $\Sigma l\left(P_{i}\right) \quad$ (Min-Sum Problem)
$>$ length of the longest path: max $l\left(P_{i}\right)$ (Min-Max Problem)

Shortest disjoint paths problem

Input: vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$
length function l on the edge set
Find: vertex disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$ minimizing an objective function
$>$ total length: $\Sigma l\left(P_{i}\right) \quad$ (Min-Sum Problem)
$>$ length of the longest path: max $l\left(P_{i}\right)$
(Min-Max Problem)

Our focus

Algorithms for restricted instances of the shortest disjoint paths problem

Our contributions

- Min-Sum Problem

Poly.-time algorithm for
$\square k=2$, planar, all terminals are on at most two faces
$\square k=3$, planar, all terminals are on one face

- Min-Max Problem ($k=2$)
\square tree-width ≥ 3 : NP-hard
\square tree-width ≤ 2 : Poly.-time algorithm

Our contributions

- Min-Sum Problem

Poly.-time algorithm for
$\square k=2$, planar, all terminals are on at most two faces
$\square k=3$, planar, all terminals are on one face

- Min-Max Problem ($k=2$)
\square tree-width ≥ 3 : NP-hard
\square tree-width ≤ 2 : Poly.-time algorithm

Min-Sum problem (known results)

Input: vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, length function l
Find: vertex disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$ minimizing the total length: $\Sigma l\left(P_{i}\right)$

General graphs

- general k
- fixed k
- $k=2$

NP-hard
OPEN
OPEN

Min-Sum problem (known results)

Input: vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, length function l
Find: vertex disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$ minimizing the total length: $\Sigma l\left(P_{i}\right)$

General graphs

- general k
- fixed k
- $k=2$

NP-hard
OPEN
OPEN

Polynomially solvable cases

- Reducible to the min-cost flow problem
- Planar graph, all s_{i} 's are on one face, and all t_{i} 's are on another face
(Colin de Verdière and Schrijver, 2008)

Polynomially solvable cases (Min-Sum)

- Reducible to the min-cost flow problem
$>s_{1}=s_{2}=\ldots=s_{k}$ (and/or) $t_{1}=t_{2}=\ldots=t_{k}$
> Planar graph, all terminals are on one face, and the ordering is $s_{1}, s_{2}, \ldots, s_{k}, t_{k}, \ldots, t_{2}, t_{1}$

Polynomially solvable cases (Min-Sum)

- Reducible to the min-cost flow problem
$>s_{1}=s_{2}=\ldots=s_{k}$ (and/or) $t_{1}=t_{2}=\ldots=t_{k}$
> Planar graph, all terminals are on one face, and the ordering is $s_{1}, s_{2}, \ldots, s_{k}, t_{k}, \ldots, t_{2}, t_{1}$
- Planar graph, all s_{i} 's are on one face, and all t_{i} 's are on another face (Colin de Verdière and Schrijver, 2008)

Polynomially solvable cases (Min-Sum)

- Reducible to the min-cost flow problem
$>s_{1}=s_{2}=\ldots=s_{k}$ (and/or) $t_{1}=t_{2}=\ldots=t_{k}$
$>$ Planar graph, all terminals are on one face, and the ordering is $s_{1}, s_{2}, \ldots, s_{k}, t_{k}, \ldots, t_{2}, t_{1}$
■ Planar graph, all s_{i} 's are on one face, and all t_{i} 's are on another face (Colin de Verdière and Schrijver, 2008)

Our results

- $k=2$, planar, all terminals are on at most two faces
- $k=3$, planar, all terminals are on one face
- $k=2$, planar, all terminals are on at most two faces One face

min-cost flow
Two faces

Colin de Verdière-Schrijver

- $k=2$, planar, all terminals are on at most two faces One face

Two faces

Colin de Verdière-Schrijver

Our results

- $k=3$, planar, all terminals are on one face

trivially infeasible

min-cost flow

Our result

Three terminals on one face

Theorem (Our results)
$k=2$, planar graph, 3 terminals are on one face
Min-Sum disjoint paths can be found in poly.-time

- Technique: reduction to the CS's result

$\left(P_{1}, P_{2}\right)$: shortest disjoint paths
P : shortest path between s_{1} and t_{2}

Three terminals on one face

Theorem (Our results)
$k=2$, planar graph, 3 terminals are on one face
Min-Sum disjoint paths can be found in poly.-time

- Technique: reduction to the CS's result

$\left(P_{1}, P_{2}\right)$: shortest disjoint paths
P : shortest path between s_{1} and t_{2}
u : vertex in $P \cap P_{1}$ closest to t_{2}
v : vertex in $\overbrace{}^{[u, t 2]} \cap P_{2}$ closest to u
subpath of P between u and t_{2}

Observations

$\left(P_{1}, P_{2}\right)$: shortest disjoint paths P : shortest path between s_{1} and t_{2} u : vertex in $P \cap P_{1}$ closest to t_{2}
v : vertex in $P^{[u, ~ 2]} \cap P_{2}$ closest to u

Obs. 1 Internal vertices of $P[u, \nu]$ are not used in $\left(P_{1}, P_{2}\right)$

Obs. 2
We may assume that P_{2} contains $P^{[v, t 2]}$

Observations

$\left(P_{1}, P_{2}\right)$: shortest disjoint paths P : shortest path between s_{1} and t_{2} u : vertex in $P \cap P_{1}$ closest to t_{2}
v : vertex in $P^{[u, ~ 2]} \cap P_{2}$ closest to u

Obs. 1 Internal vertices of $P{ }^{[u, v]}$ are not used in $\left(P_{1}, P_{2}\right)$

Obs. 2
We may assume that P_{2} contains $P^{[v, t 2]}$

How can we find $\left(P_{1}, P_{2}\right)$?

P : shortest path between s_{1} and t_{2}
u, v : fix two candidate vertices

Obs. 1 Internal vertices of $P{ }^{[u, v]}$ are not used in $\left(P_{1}, P_{2}\right)$

Obs. 2
We may assume that P_{2} contains $P^{[v, t 2]}$

How can we find $\left(P_{1}, P_{2}\right)$?

P : shortest path between s_{1} and t_{2}
u, v : fix two candidate vertices

1. Remove vertices in $P^{[u, t 2]}$ except for v
2. We find three disjoint paths

$$
\begin{aligned}
& \qquad Q_{1}: s_{1} \rightarrow u \quad Q_{2}: t_{1} \rightarrow u \quad Q_{3}: s_{2} \rightarrow v \\
& \text { with minimum total length }
\end{aligned}
$$

How can we find $\left(P_{1}, P_{2}\right)$?

P : shortest path between s_{1} and t_{2} u, v : fix two candidate vertices at most $|V|^{2}$ possibilities

1. Remove vertices in $P^{[u, t 2]}$ except for v
2. We find three disjoint paths

$$
Q_{1}: s_{1} \rightarrow u \quad Q_{2}: t_{1} \rightarrow u
$$ with minimum total length

Our contributions

- Min-Sum Problem

Poly.-time algorithm for
$\square k=2$, planar, all terminals are on at most two faces
$\square k=3$, planar, all terminals are on one face

- Min-Max Problem ($k=2$)
\square tree-width ≥ 3 : NP-hard
\square tree-width ≤ 2 : Poly.-time algorithm

Min-Max problem

Input: vertex pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$, length function l
Find: vertex disjoint paths $P_{1}, \ldots, P_{k}\left(P_{i}: s_{i} \rightarrow t_{i}\right)$ minimizing the length of the longest path: $\max l\left(P_{i}\right)$

Observations

- Most cases are NP-hard (ex. $\left.k=2, s_{1}=s_{2}, t_{1}=t_{2}\right)$

Our results

When $k=2$,

- tree-width ≥ 3 : NP-hard
- tree-width ≤ 2 : Poly.-time algorithm

NP-hardness (tw $\geq 3, k=2$)

- Reduction from NP-hard problem "Partition" Divide given integers $w_{1}, w_{2}, \ldots, w_{n}$ into two sets so that the sum of the numbers in each set is equal
- Consider the following Min-Max Problem

NP-hardness (tw $\geq 3, k=2$)

- Reduction from NP-hard problem "Partition" Divide given integers $w_{1}, w_{2}, \ldots, w_{n}$ into two sets so that the sum of the numbers in each set is equal
- Consider the following Min-Max Problem

Paths with $l\left(P_{1}\right)=l\left(P_{2}\right)$ exist \Leftrightarrow

Partition exists

Poly.-time algorithm (tw $\leq 2, k=2$)

- Outerplanar graph \Rightarrow easy to solve
\square consider every partition of the graph
\square find a shortest path in each part

Poly.-time algorithm (tw $\leq 2, k=2$)

- Outerplanar graph \Rightarrow easy to solve
\square consider every partition of the graph
\square find a shortest path in each part
$■ \mathrm{tw} \leq 2 \Rightarrow$ Reduction to outerplanar case ex.

shortest $u-v$ path

Summary

- Min-Sum Problem

Poly.-time algorithm for
$\square k=2$, planar, all terminals are on at most two faces
$\square k=3$, planar, all terminals are on one face

- Min-Max Problem ($k=2$)
\square tree-width ≥ 3 : NP-hard
\square tree-width ≤ 2 : Poly.-time algorithm
- Many Open Problems
ex. Min-Sum problem in $\left\{\begin{array}{l}\text { general } \\ \text { planar }\end{array}\right\}$ graphs for fixed k

