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e Given vertex pairs (s, t),..., (5;, t;)
Find vertex disjoint paths P,,..., P, (P;:s;,—t,)
e Many applications (ex. VLSI layout, wireless networks)
e Many variations
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e Given vertex pairs (s, t),..., (5;, t;)
Find vertex disjoint paths P,,..., P, (P;:s;,—t,)
e Many applications (ex. VLSI layout, wireless networks)
e Many variations
e general k NP-hard (Kkarp, 1975)
e fixed k Poly.-time (Robertson-Seymour, 1995)



Shortest disjoint paths problem
/Input: vertex pairs (sy, £,),-.., (5, ;) )

length function / on the edge set
Find: vertex disjoint paths P,,..., P, (P;:s,—t,)
minimizing an objective function Y

-

» total length: >~ /(P;) (Min-Sum Problem)
» length of the longest path: max /(P,)
(Min-Max Problem)
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[Input: vertex pairs (sy, £,),-.., (5, ;) )
length function / on the edge set
Find: vertex disjoint paths P,,..., P, (P;:s,—t,)

\ minimizing an objective function Y
» total length: >~ /(P;) (Min-Sum Problem)

» length of the longest path: max /(P,)
(Min-Max Problem)

Qur focus

Algorithms for restricted instances of
the shortest disjoint paths problem




" A
Our contributions

m Min-Sum Problem

Poly.-time algorithm for
k=2, planar, all terminals are on at most two faces
k=3, planar, all terminals are on one face

m Min-Max Problem (i=2)
tree-width = 3 : NP-hard
tree-width < 2 : Poly.-time algorithm
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Min-Max Problem (k=2)
tree-width = 3 : NP-hard
tree-width < 2 : Poly.-time algorithm
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Min-Sum problem (known results)

Input: vertex pairs (s, t,),..., (5;, ), length function /
Find: vertex disjoint paths P,,..., P, (P;:s;,—t))
minimizing the total length: X /(P;)

-
General graphs
e general k£ NP-hard
o fixed & OPEN

® k=2 OPEN
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Min-Sum problem (known results)

Input: vertex pairs (s, t,),..., (5;, ), length function /
Find: vertex disjoint paths P,,..., P, (P;:s;,—t))
minimizing the total length: X /(P;)

-
General graphs
e general £ NP-hard
o fixed k OPEN
® =2 OPEN

Polynomially solvable cases
e Reducible to the min-cost flow problem

e Planar graph, all s;’s are on one face, and all ¢’s are on
another face (Colin de Verdiére and Schrijver, 2008)




lynomially solvable cases (Min-Sum)
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m Reducible to the min-cost flow problem
> s,=s,=...=s, (and/or) t,=t,=...=t,
> Planar graph, all terminals are on one face, and the
ordering IS Sy, Sy,ee., Spy Lpyeees by, b
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Polynomially solvable cases (Min-Sum)
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m Reducible to the min-cost flow problem
> s,=s,=...=s, (and/or) t,=t,=...=t,
> Planar graph, all terminals are on one face, and the
ordering IS Sy, Sy,ee., Spy Lpyeees by, b

m Planar graph, all s;’s are on one face, and all #’s
are on another face (Colin de Verdiére and Schrijver, 2008)

Our results
m =2, planar, all terminals are on at most two faces

m =3, planar, all terminals are on one face




m =2, planar, all terminals are on at most two faces
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trivially infeasible min-cost flow
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m =2, planar, all terminals are on at most two faces

One face 5 & s t
t
S ! S 2
trivially infeasible min-cost flow
Two faces

s o8 s
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Colin de Verdiére-Schrijver Our results

m =3, planar, all terminals are on one face

trivially infeasible min-cost flow Our result
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~ Theorem (Our results)
k=2, planar graph, 3 terminals are on one face

g Min-Sum disjoint paths can be found in poly.-time ,

m [echnique: reduction to the CS’s result
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~ Theorem (Our results) N
k=2, planar graph, 3 terminals are on one face

Min-Sum disjoint paths can be found in poly.-time

\_ _/

m [echnique: reduction to the CS’s result

(P,, P,) : shortest disjoint paths
P : shortest path between s, and ¢,
u > vertexin PN P, closest to ¢,
v . vertex in P 21N P, closest to u

subpath of P
between « and ¢,
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. shortest disjoint paths

: shortest path between s, and ¢,
> vertex in PN P, closest to ¢,

. vertex in P 21N P, closest to u

Obs. 1
Internal vertices of Pl»I are not used in (P,, P,) ]

[

Obs. 2
We may assume that P, contains P-*] J
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How can we find (P, P,) ?

P : shortest path between s, and ¢,
u, v : fix two candidate vertices

SH

Obs. 1

[ Internal vertices of Pl»I are not used in (P,, P,) ]
Obs. 2
[ We may assume that P, contains Pl *] J




P : shortest path between s, and ¢,
u, v : fix two candidate vertices

€

. Remove vertices in Pl» 1 except for v )

2. We find three disjoint paths

Qr:s,—>u  0O,:t;—>u Qy:85, >V

with minimum total length
\_ /




P : shortest path between s, and ¢,
u, v : fix two candidate vertices

at most |V]> possibilities ]

. Remove vertices in Pl» 1 except for v )

/ Algorithm of \

Colin de Verdiere
and Schrijver

€

2. We find three disjoint paths

Qr:s,—>u  0O,:t;—>u Qy:85, >V
N with minimum total length
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Our contributions

m Min-Sum Problem
Poly.-time algorithm for

k=2, planar, all terminals are on at most two faces

k=3, planar, all terminals are on one face
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m Min-Max Problem (i=2)

tree-width = 3 : NP-hard
tree-width < 2 : Poly.-time algorithm
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Min-Max problem

Input: vertex pairs (s, t,),..., (5;, ), length function /
Find: vertex disjoint paths P,,..., P, (P;:s;,—t))
minimizing the length of the longest path: max /(P, ))

\_

Observations
e Most cases are NP-hard (ex. k=2, s,=s, , t,=t,)

/Our results N
When k=2,
e tree-width = 3 : NP-hard
. °® tree-width < 2 : Poly.-time algorithm y




rdness (tw 2 3, i=2)

m Reduction from NP-hard problem “Partition”

" Divide given integers w,, w,, ... , w, into two sets
_so that the sum of the numbers in each set is equal

m Consider the following Min-Max Problem

5 0 0 0 ’ 5

|



rdness (tw 2 3, i=2)

m Reduction from NP-hard problem “Partition”

" Divide given integers w,, w,, ... , w, into two sets
_so that the sum of the numbers in each set is equal

m Consider the following Min-Max Problem

Sl >< Wl >< W2>< ] | W>< |
5 0 0 0 ) 5

Paths with /(P,) = [(P,) exist Partition exists

|
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gorithm (tw < 2, k=2)

m QOuterplanar graph easy to solve
consider every partition of the graph
find a shortest path in each part




Poly.-time algorithm (tw < 2, £i=2)
m QOuterplanar graph easy to solve

consider every partition of the graph

find a shortest path in each part
mtw <2 Reduction to outerplanar case
EX. u u

ol Ji \?:/\ S ’tlg

o 'tz\;/ % °h : \

length of

shortest u-v path



Summail ‘y’

m Min-Sum Problem

Poly.-time algorithm for
k=2, planar, all terminals are on at most two faces
k=3, planar, all terminals are on one face

m Min-Max Problem (i=2)
tree-width = 3 : NP-hard
tree-width < 2 : Poly.-time algorithm

m Many Open Problems

ex. Min-Sum problem in ) general| graphs for fixed &
planar






