
Robust Combiners for

Cryptographic Primitives

Christian Sommer

Master’s Thesis in Computer Science

April 1st, 2006 – September 30th, 2006

Supervisors: Prof. Dr. Ueli Maurer

Bartosz Przydatek

This thesis is submitted in partial fulfilment of the requirements for the degree
of Master of Science ETH in Computer Science at ETH Zürich (Swiss Federal
Institute of Technology Zurich).

Acknowledgements

First of all, I would like to thank Bartosz Przydatek for giving me valuable
insights into combiners and Ueli Maurer for passionately teaching Cryptog-
raphy and Information Theory lectures.

I am grateful for the valuable discussions that I had with the brilliant
members of the Cryptography and Information Security Research Group and
the Quantum Information Research Group.

This thesis was improved substantially by the valuable comments of
those who read preliminary versions of it. In particular, I would like to
thank Viktor Galliard, Stephen Hogan, Bartosz Przydatek, Peter Schneider,
Hansruedi and Hermine Sommer, Stefano Tessaro, and Jürg Wullschleger
for their helpful suggestions and proofreading. (The remaining errors and
omissions are entirely the author’s responsibility.)

This work is dedicated to my family and friends, who have always given
me great support during my studies at ETH (October 2002 – Septem-
ber 2006).

Zürich, September 30th, 2006.

Christian Sommer

2

Abstract

In cryptography, we do not know which computational assump-
tions are the most secure to rely on. Robust combiners attempt
to solve this problem. Given several implementations of a certain
primitive, e.g., of a commitment scheme, a combiner merges them
into a new implementation that is secure if a minimum number of the
input implementations are secure. A (k;n)-robust combiner merges
n implementations, where k of them are required to remain secure.
In this thesis, we investigate combiners for various primitives. We
show which combiners for commitment schemes are possible and which
combiners do not exist. We show that a certain combiner construction
is impossible if only half of the input implementations are secure
(technically speaking, we prove that transparent black-box (1; 2)-robust
combiners for commitment schemes do not exist). Furthermore, we
give explicit constructions for combiners where the majority of the
input implementations are assumed to be secure.

We make further investigations about combiners for interactive
proof systems. However, this scenario is far more complicated and
therefore, the statements made are somewhat crude.

For oblivious transfer, a yet unpublished paper of Meier et al. pro-
poses more tolerant constructions using a “swap” operation. We show
that such an operation is necessary for certain types of combiners.

Zusammenfassung

Combiners werden in der Kryptographie verwendet, um sich gegen
ungewisse berechenmässige Annahmen abzusichern. Gegeben sind
Implementationen einer Primitive, zum Beispiel Bit Commitment. Ein
Combiner verknüpft diese Implementationen so, dass die Kombina-
tion sicher ist, wenn mindestens eine gewisse Anzahl der gegebenen
Implementationen sicher ist. In dieser Arbeit befassen wir uns mit
Combinern für verschiedene Primitiven. Wir untersuchen, welche
Combiners für Commitment Schemes existieren und welche unmöglich
sind. Wir zeigen, dass transparent black-box Combiner Konstruktionen
nur möglich sind, falls die Mehrheit der gegebenen Implementationen
sicher ist und konstruieren einen solchen Combiner.

Weiter haben wir uns mit Combinern für interaktive Beweissys-
teme befasst. Diese Ausgangslage ist viel komplizierter und die
gemachten Aussagen sind eher einfacher Natur.

Für Oblivious Transfer werden in einer noch unveröffentlichten
Arbeit von Meier et al. tolerantere Konstruktionen vorgeschlagen,
welche nur mit einer “swap”-Operation funktionieren. Wir zeigen,
dass eine Operation dieser Art notwendig ist.

3

4

Contents

1 Introduction 7
1.1 Our contributions . 7
1.2 Related work . 8

2 Preliminaries 9
2.1 Cryptographic primitives . 9
2.2 Combiners . 13

3 On combiners for commitment schemes 17
3.1 Information theoretic properties are guaranteed 17
3.2 No restriction on candidate schemes 22
3.3 Summary . 27

4 On combiners for interactive proof systems 28
4.1 Interactive proof systems without zero-knowledge 28
4.2 Zero-knowledge combiners . 30
4.3 Witness-hiding combiners with guaranteed soundness and com-

pleteness of the candidate systems 30
4.4 Candidate systems with guaranteed completeness 31

5 On combiners for oblivious transfer 33

6 Conclusion 35

5

6

1 Introduction

An implementation of a cryptographic primitive is often based on some
(unproven) computational assumption, e.g., the hardness of factoring integer
numbers or the hardness of computing discrete logarithms. Unfortunately,
both in the design and in the use of such primitives, we do not know which
assumptions are the most secure to rely on. We would like to have an
implementation of the primitive that is as secure as possible given the current
state of knowledge.

As it is often unclear which of the assumptions is most likely to be correct,
just picking a single implementation usually does not work - we might bet
on the wrong assumption. A better option would therefore be to have
an implementation that is guaranteed to be secure as long as a minimum
number of the assumptions are correct. A (k; n)-robust combiner is given
n implementations of which k can be assumed to be secure. By merging
these input schemes in an intelligent manner, a secure implementation can
be obtained.

1.1 Our contributions

Our contributions pertain to combiners and impossibility proofs of commit-
ment schemes, interactive proofs, and oblivious transfer.

Commitment schemes

In Section 3, we show which combiners for commitment schemes are possible
and which cannot exist. There exists a black-box combiner that is secure even
if only one implementation is secure (Theorem 5). This reduction is already
known [IL89, Nao91, HILL99, Her05]. However, for transparent black-box
combiners, the majority of the input implementations need to be secure.
The primary contribution of this thesis is a proof that there is no transparent
black-box combiner if only half of the implementations are secure (Theorem 4
and Corollary 4). Fortunately, there are simple combiners if the binding or
hiding property is guaranteed (Theorem 1 and 2), or if the majority of the
input implementations are secure ([Her05] and Theorem 6).

Interactive proof systems

Proof systems are far more complicated. We state our approach and some
basic results about combiners for interactive proof systems in Section 4.
The results reveal that a possible transparent black-box combiner will not

7

be deterministic, and that any function that splits input x into multiple
instances x1 . . . xn must not rely on the witness w.

Oblivious transfer

Our contribution is a modification of [HKN+05, Theorem 4.1] to prove that
uni-directional transparent black-box {3, 2}-robust uniform combiners do not
exist (Theorem 14).

1.2 Related work

The idea of using several implementations for encryption in order to obtain
better security has been a research topic in cryptography for several years
[AB81, EG85, Sie85, DK05]. Recent efforts in research on combiners have also
investigated interactive primitives. [Her05] analysed combiner constructions
on an abstract level and introduced combiners for one-way functions and
commitment schemes. Furthermore, Herzberg pointed out that efficiency
is crucial for combiners. Combiners for oblivious transfer, key-agreement,
and public-key encryption were studied in [HKN+05]. Combiners for private
information retrieval and general “cross-primitive” combiners were presented
in [MP06]. Security assumptions for combiners were adapted and combiner
definitions were strengthened in [MPW06].

8

2 Preliminaries

2.1 Cryptographic primitives

Notation Cryptographic primitives are indicated in boldface capitals as
in T. An arbitrary implementation of T (satisfying T’s functionality) is
denoted by a typewriter font letter as in t. For a cryptographic property
a of a primitive T, ta denotes an arbitrary implementation of T satisfying
functionality and a. In this work, we usually do not distinguish information
theoretic and cryptographic properties. A capital letter (A) is used if we
explicitly consider an information theoretic property. For lowercase letters,
the property might be cryptographic or even information theoretic secure.
For all security properties ai of T, T = {ta1a2...}.

For primitives we distinguish between functional properties and security
properties. Roughly speaking, functional properties mean that an imple-
mentation fulfils the primitive’s protocol specification. Functionality usually
can be tested. Cryptography’s main objective is the fulfilment of the security
properties, which specify, e.g., under which assumptions a party can compute
information about a value.

One-way functions (OWF) are the basic primitives in cryptography.
Most other primitives can be related to one-way functions. Often one assumes
the existence of one-way functions in order to perform cryptography.

Definition 1 (Strong One-Way Functions [Gol00]). A function f : {0, 1}∗ →
{0, 1}∗ is called (strongly) one-way if the following two conditions hold:

i. Easy to compute: There exists a (deterministic) polynomial time
algorithm A such that on input x algorithm A outputs f(x) (i.e.,
A(x) = f(x)).

ii. Hard to invert: Un denotes a random variable uniformly distributed over
{0, 1}n. For every probabilistic polynomial time algorithm A′, every
positive polynomial p(·), and all sufficiently large n,

Pr[A′(f(Un), 1n) ∈ f−1(f(Un))] <
1

p(n)

According to the notation above, owfo denotes a function satisfying the
one-way property (hard to invert). We consider efficient computability as a
functional property of one-way functions.

9

Oblivious transfer (OT) [Rab81, EGL85] is used by various multi-party
computations. There are several variants of oblivious transfer; the version
we use within this thesis is called chosen one-out-of-two oblivious transfer.

Definition 2 (Oblivious Transfer [WW04]). By oblivious transfer we mean
the following primitive between a sender A and a receiver B. A has two
inputs b0 and b1 and no output. B has input c and output bc.

An implementation of OT is denoted by ot. We abbreviate an execution
of an OT protocol by ot(b0, b1; c). The security properties are Sender’s
privacy and Receiver’s privacy.

Commitment schemes (BC) are an important tool in cryptographic pro-
tocols. Such a scheme works in two phases. In the commit phase, the sender
(Alice) can commit to a value b without telling the receiver (Bob) her choice.
The receiver usually gets a commitment c. Bob should not be able to guess
b efficiently. This is called the hiding property. In a later open phase, Alice
reveals her choice. Bob gets an output b′ and decides whether he accepts
the opening of the commitment. Alice should not be able to change her
bit afterwards, i.e., to convince Bob of another bit b′ 6= b. This is called
the binding property. For an introduction to commitment schemes, see for
example [Dam98]. The following definition is adapted from [Gol00].

Definition 3 (Bit Commitment Scheme). A bit commitment scheme is a
pair of probabilistic polynomial time interactive machines, denoted (S, R) (for
sender and receiver), satisfying the following:

• Input specification: The common input is an integer n presented in
unary (serving as the security parameter).
The private input to the sender is a bit, denoted b.

• Secrecy (or hiding): The receiver (even when deviating arbitrarily from
the protocol) is unable to distinguish a commitment to 0 from a com-
mitment to 1. Indistinguishability can be computational, statistical, or
information theoretic.

• Unambiguity (or binding): Preliminaries to the requirement

i. A receiver’s view of an interaction with the sender, denoted (ρr, m̄),
consists of the random coins used by the receiver (ρr) and the
sequence of messages received from the sender (m̄).

ii. Let σ ∈ {0, 1}. We say that a receiver’s view (of such interaction),
(ρr, m̄) is a possible σ-commitment if there exists a string ρs such

10

that m̄ describes the messages received by R when R uses local
coins ρr and interacts with machine S that uses local coins ρs and
has input (σ, 1n).

iii. We say that the receiver’s view (ρr, m̄) is ambiguous if it is both
a possible 0-commitment and a possible 1-commitment.

The unambiguity requirement asserts that it is either computationally
hard for the sender to find a sequence of messages that, together with
these coin tosses, forms an ambiguous receiver view, or that it is sta-
tistically or information theoretic impossible to find such a sequence.

According to the notation above, bcbh denotes a commitment scheme
satisfying both the Binding and Hiding property.

It is well known that for any commitment to a bit, at most one of the
properties, either binding or hiding, can be information theoretic secure at
the same time. We give a brief proof.

Theorem. No commitment is both information theoretic hiding and infor-
mation theoretic binding.

Proof. Let B and C be random variables for the bit and the commitment.
H is the entropy function.

• Information theoretic hiding means that the commitment C contains
no information about the bit B, i.e., H(B|C) = H(B).

• Information theoretic binding means that the bit B is determined
uniquely having the commitment C, i.e., H(B|C) = 0.

These two requirements lead to H(B) = 0. This is impossible for any
meaningful commitment.

Thus, the best possible implementations are those where one property is
information theoretic / statistically secure and the other property is based
on a computational assumption. Implementations of this kind are the most
common.

Definition 4. A statistically binding bit commitment scheme is a bit com-
mitment scheme with statistical unambiguity and computational secrecy.

Definition 5. A statistically hiding bit commitment scheme is a bit com-
mitment scheme with computational unambiguity and statistical secrecy.

11

An unbounded sender can cheat in cryptographic binding schemes by
breaking the security assumption. An unbounded sender can sometimes cheat
a bounded receiver even in secure binding schemes. Consider the folklore
reduction from OT to BC: b = x0⊕ x1, Commit : ot(x0, x1; c), the receiver
gets xc and the sender does not know which bit the receiver got; Open :
send x0, x1. We assume an OT with cryptographic privacy properties. The
receiver can cheat if he obtains both bits. The sender can cheat if and only
if he knows which bit the receiver chose and if the receiver is unable to
cheat. Therefore, the security assumption against the sender depends on the
capabilities of both the sender and the receiver. This commitment scheme
does not conform to the previous definitions.

Loosely speaking, zero-knowledge proofs [GMR85, GMW91] are proofs
that yield nothing beyond the validity of the assertion. Common mathemat-
ical proofs are static. Interactive proofs are more like a dynamic proof where
a verifier, if he is convinced, accepts a sequence of arguments and answers to
his interrogation of the prover.

Definition 6 (Interactive Proof System [Gol00]). A pair of interactive Tur-
ing machines ip = (P, V) is called an interactive proof system for a language
L if machine V is polynomial time and the following two conditions hold
(〈P, V 〉 (x) denotes the random variable representing the (local) output of V
when interacting with P on common input x, 1 is interpreted as “accept”, 0
is interpreted as “reject”):

• Completeness: For every x ∈ L,

Pr[〈P, V 〉 (x) = 1] ≥ 2

3

• Soundness: For every x 6∈ L and every interactive machine P ′,

Pr[〈P ′, V 〉 (x) = 1] ≤ 1

3

Definition 7 (Perfect Zero-Knowledge [Gol00]). Let (P, V) be an interactive
proof system for a language L. We say that (P, V) is perfect zero-knowledge
if for every probabilistic polynomial time interactive machine V ∗ there exists
a probabilistic polynomial time algorithm M∗ such that for every x ∈ L the
following two conditions hold:

i. With probability at most 1
2
, on input x, machine M∗ outputs a special

symbol denoted ⊥ (i.e., Pr[M∗(x) = ⊥] ≤ 1
2
).

12

ii. Let m∗(x) be a random variable describing the distribution of M∗(x)
conditioned on M∗(x) 6= ⊥ (i.e., Pr[M∗(x) = α] = Pr[m∗(x) =
α|M∗(x) 6= ⊥] for every α ∈ {0, 1}∗). Then the following random
variables are identically distributed:

• 〈P, V ∗〉 (x) (i.e., the output of the interactive machine V ∗ after
interacting with the interactive machine P on common input x)

• m∗(x) (i.e., the output of machine M∗ on input x, conditioned on
not being ⊥)

Machine M∗ is called a perfect simulator for the interaction of V ∗ with P .

Definition 8 (Computational Zero-Knowledge [Gol00]). Let (P, V) be an
interactive proof system for a language L. We say that (P, V) is compu-
tational zero-knowledge (or just zero-knowledge) if for every probabilistic
polynomial time interactive machine V ∗ there exists a probabilistic polynomial
time algorithm M∗ such that the following two ensembles are computationally
indistinguishable:

• {〈P, V ∗〉 (x)}x∈L (i.e., the output of the interactive machine V ∗ after it
interacts with the interactive machine P on common input x)

• {M∗(x)}x∈L (i.e., the output of machine M∗ on input x)

Machine M∗ is called a simulator for the interaction of V ∗ with P .

Definition 9 (Zero-Knowledge Interactive Proof System). A zero-knowledge
interactive proof system for a language L is an interactive proof system for
L that satisfies the zero-knowledge conditions.

According to the notation above, ipcsz denotes a proof system satisfying
Completeness, Soundness, and the Zero-knowledge property. A superscript
w stands for W itness-hiding.

2.2 Combiners

Combiners compound several input implementations of a certain primitive
in order to obtain a secure implementation. Given some assumptions about
the input implementations, security properties about the combination are
proven. Thus, combiners form a tolerant reduction.

13

Notation A combiner for T is denoted with tcmb(. . .). The input con-
figuration is taken arbitrarily from a set of tuples of implementations,
S = {(t..., t..., . . .), . . .}. To denote the set of all permutations of a tuple
(t..., t..., . . .) we use P(t..., t..., . . .), e.g., P(tA, t) = {(tA, t), (t, tA)}.

Definition 10 ((k; n)-Robust Combiner [HKN+05]). Let T be a crypto-
graphic primitive. A (k; n)-robust combiner for T is a probabilistic poly-
nomial time Turing machine that gets n candidate schemes1 as inputs, and
implements T while satisfying the following two properties:

i. If at least k candidates securely implement T then the combiner also
securely implements T.

ii. The running time of the combiner is polynomial in the security param-
eter (m), in n, and in the lengths of the inputs to T.

If there is a combiner from a set of tuples of input implementations S
to a set of tuples of output implementations S ′ (usually, |S ′| = 1), this is
a reduction S =⇒ S ′. E.g., a (1; 2)-robust combiner for T with property a
(T = {ta}) performs the reduction {(ta, t), (t, ta)} =⇒ {ta} = T.

Definition 11 (Black-Box Combiner [HKN+05]). A (k; n)-robust combiner
is said to be black-box if the following conditions hold:

i. Black-box implementation: The combiner is an oracle probabilistic
polynomial time Turing machine given access to the candidates via
oracle calls to their implementation function.

ii. Black-box proof: For at least n−k+1 candidates there exists an oracle
probabilistic polynomial time Turing machine RA (with access to A)
such if adversary A breaks the combiner then RA breaks the candidate.

If there is a black-box combiner from a set of tuples of input implemen-
tations S to a set of tuples of output implementations S ′, this is a black-box

reduction S
BB
=⇒ S ′.

In the special case of interactive primitives, the functionality of the
primitive can be divided into two parts:

(i) The next message function, which determines the next message to be
sent by a party (given its partial view of the interaction).

1running in polynomial time

14

(ii) An output function, which determines a party’s local output (given the
view of the entire interaction).

A protocol is then obtained by letting each of the sides alternatively generate
their next message by applying the corresponding function to their own local
inputs, randomness, and partial view (up to that point in the interaction).
Within transparent combiners, we allow the use of the primitive only in the
context of the protocol (rather than allowing offline access to its oracles).

Definition 12 (Transparent Black-Box Combiner [HKN+05]). A transpar-
ent black-box combiner is a black-box combiner for an interactive primitive,
where every call to a candidate’s next message function is followed by this
message sent to the other party.

If there is a transparent black-box combiner from a set of tuples of input
implementations S to a set of tuples of output implementations S ′, this is a

transparent black-box reduction S
TB
=⇒ S ′.

Transparent combiners define something between “normal” black-box and
third party combiners.

Definition 13 (Third Party Black-Box Combiner [HKN+05]). A third party
black-box combiner is a black-box combiner where the candidates behave like
trusted third parties. The candidates give no transcript to the players, but
rather take their inputs and return outputs.

If there is a third party combiner from a set of tuples of input implemen-
tations S to a set of tuples of output implementations S ′, this is a third party

reduction S
3P

=⇒ S ′.

A third party black-box reduction is harder to achieve than a transparent
black-box, a black-box, or even an unconstrained reduction. Therefore, if

S
3P

=⇒ S ′ then S
TB
=⇒ S ′, if S

TB
=⇒ S ′ then S

BB
=⇒ S ′, and if S

BB
=⇒ S ′ then

S =⇒ S ′.
Furthermore, if {C1, C2, . . .} =⇒ S ′ then {C2, . . .} =⇒ S ′, because the

combiner guarantees S ′ for all input configurations Ci (especially, the com-

biner has to work for the worst-case). The same relation holds for
3P

=⇒,
TB
=⇒,

and
BB
=⇒.

In addition to the k out of n requirement for the input primitives (as
defined in [HKN+05]), [MPW06] proposes more general definitions, which
allow for stronger and weaker combiners.

15

Definition 14 ((α, β; n)-robust combiner [MPW06]). Let T be a crypto-
graphic primitive for two parties Alice and Bob. An (α, β; n)-robust combiner
for T is a probabilistic polynomial time Turing machine that gets n candidate
schemes implementing T as inputs and implements T while satisfying the
following two properties:

i. If at least α candidates implement T securely for Alice and at least β
candidates implement T securely for Bob then the combiner securely
implements T.

ii. The running time of the combiner is polynomial in the security param-
eter m, in n, and in the lengths of the inputs to T.

Definition 15 ({δ, n}-robust uniform combiner [MPW06]). A combiner for
a two-party primitive T is {δ, n}-robust uniform if it is an (α, β; n)-robust
combiner for T for all α, β satisfying α + β ≥ δ.

16

3 On combiners for commitment schemes

Within combiners insecure implementations can be broken completely. In
practice, a reasonable assumption is to require combiners to ensure tolerance
for computational assumptions only. We distinguish two possible interpre-
tations for insecure implementations given as input to a combiner for bit
commitment.

3.1 Information theoretic properties are guaranteed

P(bcBh, bcB)
3P

=⇒ {bcBh} and P(bcH , bcbH)
3P

=⇒ {bcbH}
but {(bcBh, bcH), (bcB, bcbH)} 6 TB

=⇒ BC

On one hand we could say that only the cryptographic property relies
on a computational assumption, and that the information theoretic property
of a commitment scheme (binding or hiding) still holds, even for insecure
implementations. These input scenarios often can be combined trivially.

For two information theoretic binding implementations (binding is guar-
anteed for both input implementations), i.e., the input set is P(bcBh, bcB) =
{(bcBh, bcB), (bcB, bcBh)}, a (1; 2)-robust combiner can be constructed, pro-
tecting the sender against incorrect cryptographic assumptions for hiding.

Theorem 1. There exists a third party black-box (1; 2)-robust combiner for
bit commitment with guaranteed binding property of the candidate schemes.

Proof. Alice commits to b1 and b2 with one scheme, respectively, where
b = b1 ⊕ b2. If one scheme leaks the committed bit, i.e., the hiding property
is violated, the receiver still does not obtain any information about b.

Corollary 1. There exists a third party black-box (2, 1; 2)-robust combiner
for bit commitment.

The same holds for the hiding property with input set P(bcbH , bcH).

Theorem 2. There exists a third party black-box (1; 2)-robust combiner for
bit commitment with guaranteed hiding property of the candidate schemes.

Proof. Alice commits to the same value twice. If both openings lead to the
same bit, i.e., b′1 = b′2, Bob accepts. Alice was not able to cheat, because at
least one candidate scheme is secure. Since both schemes are hiding, Bob
can only flip a coin to guess the original bit before the opening phase.

Corollary 2. There exists a third party black-box (1, 2; 2)-robust combiner
for bit commitment.

17

It seems hard to construct a combiner from a hiding and a binding scheme,
i.e., possible input implementations are (bcBh, bcH) and (bcB, bcbH).

Definition 16. A straightforward combiner for commitment schemes is a
transparent black-box combiner with the following properties: After the com-
mit phase, Alice has commited to a sequence of bits B. The open proce-
dure consists of Alice opening the commitments and optionally sending an
additional value ρs. Then, Bob efficiently computes the bit (b′) and decides
whether he accepts (if a′ = >), i.e., Bob computes f(B′, ρs) = (b′, a′).

Theorem 3. There is no straightforward (1; 2)-robust combiner for bit com-
mitment if one candidate scheme is information theoretic binding, the other
candidate scheme is information theoretic hiding, and at least one scheme’s
computational assumption is fulfilled.

Proof. We prove by contradiction. We assume to have a straightforward
(1; 2)-robust combiner in a world with PSPACE-complete oracle. Alice
commits to bits B = (b1, b2, b3, . . .). The original bit b and a truth value
a whether Bob accepts the commitment can be computed from B, i.e.,
(b, a) = f(B, ρs). In the decommit phase, Alice opens these bits and
Bob gets B′ = (b′1, b

′
2, b

′
3, . . .). Bob can efficiently compute the value

(b′, a′) = f(B′, ρs) and he accepts if a′ = >. A combiner using only one
scheme might rely on the wrong one, therefore, we only consider com-
biners using both schemes. We split the input bits into bits committed
with the binding scheme, namely BB = (bB

1 , bB
2 , bB

3 , . . .), and bits of the
hiding scheme, namely BH = (bH

1 , bH
2 , bH

3 , . . .). After the commit pro-
tocol of the combiner, Bob has received commitments and messages of
both schemes, say CB = (cB

1 , cB
2 , cB

3 , . . .), M̄B = (m̄B
1 , m̄B

2 , m̄B
3 , . . .), and

CH = (cH
1 , cH

2 , cH
3 , . . .), M̄H = (m̄H

1 , m̄H
2 , m̄H

3 , . . .). If the binding scheme
bcB was insecure for Alice, Bob could open all bits committed with it, i.e.,
he can compute efficiently BB = (bB

1 , bB
2 , bB

3 , . . .) from CB and M̄B. Since
the combiner is assumed secure, Bob must not be able to compute efficiently
the original bit b, i.e., there is no efficient algorithm A′ computing b given
BB (and CH , M̄H , but without BH).

Since the combiner is running in polynomial time, f has to be computable
in polynomial time. Bob asks the PSPACE-complete oracle to count the
size of two sets, namely r0 := |{(B̃H , r̃) : f(BBB̃H , r̃) = (0,>)}| and
r1 := |{(B̃H , r̃) : f(BBB̃H , r̃) = (1,>)}|. If r0 6≈ r1 then the commitment
is not hiding and therefore, Bob can predict b. If both r0 > 0 and r1 > 0,
Alice is able to cheat efficiently if the hiding scheme is not binding (simply
by asking the PSPACE-complete oracle for two configurations (BH , ρs) and
(B′H , ρ′s) satisfying f(BBBH , ρs) = (0,>) and f(BBB′H , ρ′s) = (1,>)). She

18

can choose BB as before, then cheat about BH (since the second scheme
is not binding in this case), and therefore, open the commitment for two
different values efficiently.

An analogue proof works for “straightforward” combiners for OT (see
Definition 20).

Another proof for the theorem is similar to the impossibility proof for
OT of [HKN+05]. The crucial point is the definition of the BC oracles used.
From this theorem we also conclude Corollary 3 and 4.

Theorem 4. There is no transparent black-box (1; 2)-robust combiner for
bit commitment if one candidate scheme is information theoretic binding,
the other candidate scheme is information theoretic hiding, and at least one
scheme’s computational assumption is fulfilled.

Proof. The proof is similar to the one of [HKN+05, Theorem 4.1]. Usually,
black-box separation proofs (A 6⇒ B) work by constructing a world (W)
wherein A exists but B does not. Since A ⇒ B would have to hold in
any world (including W), this argument suffices. The standard approach
is not possible for a (1; 2)-robust combiner for T, because if an implemen-
tation t exists, there is a trivial combiner simply using t. Therefore, one
method for an impossibility proof for combiners is to construct two worlds
(World1, World2) wherein T exists, but any combiner is secure in at most one
of these worlds.

The proof is by contradiction. We assume there exists a transparent
black-box (1; 2)-robust combiner for BC, say bccmb(·, ·). In any world where
BC exists, the combiner has to work as specified, i.e., if at most one com-
putational assumption is broken, the combiner is still secure. We show two
worlds (World1, World2) wherein BC exists such that every transparent black-
box combiner for BC is insecure in at least one of them.

Before constructing the worlds, we determine implementations of BC
to be placed in the worlds. The implementations make use of two oracles
(OBh,ObH) defined next. The first implementation, bcBh, is information the-
oretic binding and consists of an oracle implementing a random permutation
(OBh). The second implementation, bcbH , is information theoretic hiding.
For every commitment c there are exactly two possibilities to open it, one
for b = 0 and one for b = 1.

OBh : {0, 1} × {0, 1}n → {0, 1}n+1 random permutation

ObH : {0, 1} × {0, 1}n → {0, 1}n random function, such that

∀c ∈ {0, 1}n∃ρ0, ρ1 ∈ {0, 1}n : ObH(0, ρ0) = ObH(1, ρ1) = c

19

The protocols make use of these oracles. In the Commit phase of both
protocols (bcBh, bcbH), the sender chooses bit b and randomness ρs and
queries the oracle, c = O(b, ρs). The resulting commitment (c) is sent
to the receiver. In the Open phase, the sender reveals his choices (b, ρs)
and the receiver checks if the values are consistent with c by querying the
corresponding oracle.

Claim. Both oracles enable the execution of a BC protocol even in the
presence of a PSPACE-complete oracle.

For both implementations the PSPACE-complete oracle does not help.
To compute the original bit in the binding implementation (bcBh), all the
receiver can do is to query the oracle in an exhaustive search (the expected
number of queries needed is 2n−1). Finding a collision in the hiding imple-
mentation (bcbH) is possible only by excessively querying the oracle ObH

(according to the birthday paradox, the expected number of queries needed
to find a collision is

√
2n). �

On the assumption that bccmb(·, ·) is a secure combiner, bccmb(bc
Bh, bcH)

and bccmb(bc
B, bcbH) are secure implementations of BC in any world.

The combiner’s task is to ensure tolerance if one implementation is inse-
cure. We construct inverters to selectively break one implementation’s secu-
rity. The binding oracle is made flawed by an inverter (OBh)−1 computing
the committed bit and the randomness used. The hiding oracle is made
flawed by an oracle (ObH)−1 computing r0 and r1 given c.

We now construct the two worlds. In each world one of the implementa-
tions is made flawed by adding the inverter.
World1 contains a PSPACE-complete oracle, OBh, ObH , and (OBh)−1.
World2 contains a PSPACE-complete oracle, OBh, ObH , and (ObH)−1.

Furthermore, we construct an “insecure” BareWorld, which is later com-
pared with World1 and World2. The BareWorld contains a PSPACE-complete
oracle only. The BC oracles are simulated with naive implementations. In
the simulation of an oracle O, the simulating party receives bit and random-
ness from the committing party, answers with a random value that preserves
the oracle’s conditions, and saves the tuple in the function table for future
queries, i.e.:

• Within bcBh, the receiver simulates the oracle OBh, i.e., for any
committed bit, he receives bit and randomness from the committing
party and sends back a random value that preserves the permutation

20

condition (and saves the tuple for future queries, i.e., he maintains a
function table). The resulting (insecure) oracle simulation is denoted
by R(OBh).

• The sender simulates the oracle ObH within the hiding scheme (bcbH),
i.e., for any committed bit, he receives bit and randomness from the
committing party (which usually is himself) and sends back a random
n-bit string that preserves the collision condition (and saves the tuple).
The resulting (insecure) oracle simulation is denoted by S(ObH).

Claim. The combiner in the BareWorld is insecure.

The simulations are insecure. R(OBh) is not hiding and S(OBH) is
not binding. BC does not exist without any hardness assumption. The
combiner cannot build a commitment scheme from scratch in the presence
of a PSPACE-complete oracle. Therefore, the resulting implementation
bccmb(R(OBh),S(ObH)) cannot implement a secure commitment scheme.
Thus, there is a successful attack in the BareWorld. �

Claim. Every successful attack in the BareWorld results in an attack in
World1 or in World2.

For an illustration, see Figure 1.
If the receiver in the BareWorld is able to violate the hiding property,

then the receiver in World1 is able to compute the bit, because he has access
to the same information, namely to all commitments of bcbH and all bits,
random values, and commitments of bcBh. In addition, in the BareWorld, the
implementation of bcBh is not binding for the receiver, because he simulates
OBh himself. However, the capability to open his committed bits arbitrarily
does not help the receiver to guess the sender’s bit.

If the sender in the BareWorld is able to violate binding, then the sender
in World2 is able to violate the binding property, because he can influence
the same values, namely the commitments of bcbH . In addition, in the Bare-
World, the implementation of bcbH is not hiding for the receiver, because the
sender simulates ObH himself. However, the capability to open the receiver’s
committed bits does not help the sender to violate the binding property. �

Any of these attacks contradicts the assumption. Thus, there is no such
combiner.

A {3, 2}-robust uniform combiner for BC has to work for P(bcbh, bcb) ∪
P(bcbh, bch), where, compared to the inputs in Theorem 4, {(bcbH , bcB),
(bcH , bcBh)}, even fewer security properties are guaranteed. This observation
results in the following corollary.

21

attack for receiver

rcv. simulates R(OBh)

PSPACE oracle

BareWorld

World1

PSPACE oracle

OBh,OhB

(OBh)−1 (ObH)−1

OBh,OhB

PSPACE oracle

World2

attack for sender

snd. simulates S(ObH)

Figure 1: Illustration for the proof of Theorem 4

Corollary 3. There is no transparent black-box {3, 2}-robust uniform com-
biner for bit commitment.

3.2 No restriction on candidate schemes

3.2.1 (1; 2)-robust combiners

P(bcbh, bc) 6 TB
=⇒ BC but P(bcbh, bc)

BB
=⇒ {bcBh} = BC

In the previous section, information theoretic properties were guaranteed.
Alternatively, we could say that an insecure implementation only fulfils
the specified functionality but no security can be assumed at all. This

22

corresponds to the definition of combiners (Definition 10). In this case, the
construction of a combiner is more difficult.

A (1; 2)-robust combiner for BC has to work for P(bcbh, bc), where,
compared to the inputs in Theorem 4, {(bcbH , bcB), (bcH , bcBh)}, even fewer
security properties are guaranteed. This observation results in the following
corollary.

Corollary 4. There is no transparent black-box (1; 2)-robust combiner for
bit commitment.

Combiners are required to run in polynomial time. Furthermore, [Her05]
pointed out that combiners, for their use in practice, should be “efficient”
(e.g., only little additional computation and only few calls of the input
implementations necessary). The black-box construction in this section is
of theoretical interest. Even though the construction runs in polynomial
time the reductions used within are too slow for practical use.

Using the reductions from commitment schemes to one-way functions
[IL89], from one-way functions to pseudo-random generators [HILL99], and
from pseudo-random generators to binding commitment schemes [Nao91],
a non-transparent black-box combiner for commitment schemes can be
obtained.

Theorem 5. There exists a black-box (1; 2)-robust combiner for BC.

Proof. The combiner is constructed as follows (cf. Figure 2).

bc

owf

owf

bc

owfo prg bcBh

Figure 2: Illustration for the four step reduction in the proof of Theorem 5

(i) BC =⇒ OWF: From both commitment schemes given as input, a one-
way function can be obtained [IL89]. One of these one-way functions
is secure because one of the commitment schemes is secure.

(ii) (1; 2)-robust combiner for OWF (P(owfo, owf) =⇒ OWF): In the
next step, the combiner for one-way functions is used, i.e., f(x|y) =

23

f1(x)|f2(y) (where | denotes string concatenation). The resulting func-
tion (f) is one-way if at least one of the input functions (f1, f2) is
one-way [Her05].

(iii) OWF =⇒ PRG: The one-way function is used to obtain a pseudo-
random generator [HILL99].

(iv) PRG =⇒ BC: The pseudo-random generator is used to construct a
statistically binding commitment scheme [Nao91].

This construction cannot be applied within a transparent black-box com-
biner. The one-way function is obtained by a simulation of the commitment
scheme. A transparent black-box combiner is obliged to send these messages
to the other party. The constructions of [Nao91, HILL99] need offline access
to the OWF.

To illustrate how we can construct a one-way function from a bit commit-
ment scheme, we show the construction from statistically binding commit-
ment schemes to one-way functions. For the general case we refer to [IL89].

Lemma 1. There exists a black-box reduction from statistically binding bit
commitment schemes to one-way functions.

Proof. We follow the guideline of [Gol00, Exercise 13, Page 326]. A protocol
consists of two probabilistic polynomial time Turing machines, the random-
ness is given as random bits on an additional tape. Within the commit
protocol, the sender uses randomness ρs to commit to a bit b and the receiver
uses randomness ρr. The communication of the commit protocol is a sequence
m̄ of messages.

We consider the mapping to the receiver’s view, (b, ρs, ρr) 7→ (ρr, m̄),
containing his random bits and all messages.

By Definition 1, a one-way function needs to be easy to compute and
hard to invert. The first requirement is guaranteed by construction. Since
the Turing machines used in the bit commitment scheme run in polynomial
time, we can simulate the sender’s machine S and the receiver’s machine
R in polynomial time to obtain the output f(b|ρs|ρr) = (r|m̄). The second
requirement is proven by contradiction. We assume that there is an algorithm
A′ that computes an inverse with non-negligible probability, i.e., A′(ρr|m̄) =
(b′|ρ′s|ρ′r) with non-negligible probability.

• If ρ′r 6= ρr, A′ did not compute an inverse, because, by construction of
f , all function pairs are of the form (b|ρs|ρr, ρr|m̄) ∈ f .

• If ρ′r = ρr, two cases are distinguished:

24

– Using the statistical unambiguity requirement of the commitment
scheme, b′ 6= b is possible only for a negligible fraction of the
coin tosses of the receiver (ρr) and therefore, only for a negligible
fraction of the ρr|m̄.

– If b′ = b, we may use A′ to break the commitment’s secrecy; how-
ever, {〈S(0), R∗〉 (1n)}n∈N and {〈S(1), R∗〉 (1n)}n∈N are required
to be computationally indistinguishable.

The computational assumption for the hiding property results in the
computational assumption that f is prevented from being inverted.

3.2.2 Combiners for a secure majority

P(bcbh, bcbh, bc) ∪ P(bcbh, bcb, bch)
3P

=⇒ BC

(bn
2
c + 1; n)-robust combiners for BC were presented in [Her05] using a

t-out-of-n secret sharing [Sha79] for a threshold t. t + 1 shares uniquely
determine the shared value v, but t shares do not give any information
about v. Sharing combiners are defined as follows: given a secret shar-
ing scheme 〈Share,Reconstruct〉, Alice generates the shares for bit b
using randomness ρs and she then commits with one scheme per share, i.e.,
bci.Commit(Sharei(b, ρs)). In the Open phase, she opens all commitments
and Bob applies b = Reconstruct(b1 . . . bn). If the shares are consistent,
he accepts b. A security proof is given within the proof of Theorem 7.

In general, any bn
2
c + 1 implementations can be secure for the receiver

(binding) and any (maybe other) bn
2
c + 1 candidates can be secure for the

sender (hiding). Since 2 · (bn
2
c+ 1) > n, at least one implementation is both

binding and hiding. This is called a (bn
2
c + 1, bn

2
c + 1; n)-robust combiner

(Definition 14). We give a concrete implementation of a (2, 2; 3)-robust
combiner, which also implies a (2; 3)-robust combiner.

Theorem 6. There exists a third party black-box (2, 2; 3)-robust combiner
for bit commitment.

Proof. Bob is protected against a wrong binding assumption using redun-
dancy and Alice is protected against a wrong hiding assumption using ⊕.
Alice commits to random b1, b2, and b3 satisfying b = b1⊕ b2⊕ b3. With each
implementation Alice commits to two values as defined in Figure 3 (a share
consists of two bits). If one implementation bci is insecure for Bob, i.e., not
binding, he will catch a malicious Alice using the redundancy, because Alice
has committed to both bits with the other schemes.

25

b1 b2 b3

bc1 − X X
bc2 X − X
bc3 X X −

Figure 3: With each input implementation of the (2, 2; 3)-robust combiner
Alice commits to two values (a X denotes a commitment for this bit), e.g.,
with bc1 Alice commits to b2 and to b3.

With one implementation bci violating the hiding property, Bob does not
learn the third value bi and therefore, Bob does not obtain any information
about b.

Corollary 5. There exists a third party black-box (2; 3)-robust combiner for
bit commitment.

Note that the combiners with guaranteed binding and guaranteed hiding
(Corollary 1 and 2) are special cases of the sharing combiner.

Theorem 7. There exists a third party black-box (α, β; n)-robust combiner
for BC, if and only if α + β > n.

Proof. If α+β ≤ n, the set of tuples of input implementations might consist
of α trivial simulations of a hiding commitment (Alice simulates a random
oracle, not binding) and β trivial simulations of a binding commitment (Bob
simulates a random oracle, not hiding), i.e., two distinct ensembles, one with
the binding schemes and one with the hiding schemes. No implementation
can provide a secure commitment for both parties. There is no commitment
scheme without any hardness assumption. Thus, there is no combiner that
is secure for these input implementations.

If α + β > n, using the sharing combiner of [Her05], a robust combiner
is constructed. The sharing has degree n−α, therefore, n−α commitments
with broken hiding property do not leak any information about the original
bit. The degree is at most β − 1, (β > n − α). At least β implementations
are secure binding. Therefore, Bob will catch a malicious Alice using the
redundancy.

This characteristic of BC is very similar to OT. Since OT is symmetric2

[WW04], there are more tolerant combiner constructions [MPW06]. In
contrast, BC is not known to be symmetric.

2It is possible to use an OT-protocol with sender A and receiver B to simulate an
OT-protocol with swapped roles as follows: A sets csim = b0 ⊕ b1 and receives bcsim

,
B chooses ρ at random and sets b0,sim = ρ, b1,sim = ρ ⊕ c (i.e., ot(ρ, ρ ⊕ c; b0 ⊕ b1)).
Afterwards, A sends m = b0 ⊕ bcsim . Then, B can compute bc = ρ⊕m.

26

3.3 Summary

We briefly summarise our contribution and known results in the following
table using the notation introduced in this thesis.

P(bcBh, bcB)
3P

=⇒ {bcBh} = BC Theorem 1, Corollary 1

P(bcbH , bcH)
3P

=⇒ {bcbH} = BC Theorem 2, Corollary 2

{(bcbH , bcB), (bcH , bcBh)} 6 TB
=⇒ BC Theorem 4

P(bcbh, bc) 6 TB
=⇒ BC Corollary 4

P(bcbh, bc)
BB
=⇒ {bcBh} = BC [IL89, Nao91, HILL99, Her05]

(Theorem 5)

P(bcbh, bcbh, bc)
3P

=⇒ {bcbh} = BC [Her05], Corollary 5

P(bcbh, bcbh, bc) ∪ P(bcbh, bcb, bch)
3P

=⇒ BC Theorem 6

27

4 On combiners for interactive proof systems

A (1; 2)-robust combiner for zero-knowledge interactive proof systems gets as
input 2 interactive proof systems (ip1, ip2) where one of the input systems
can be insecure. Insecure means that the system could fail on three counts,
namely on soundness, completeness, and on the zero-knowledge property.

Definition 17. A straightforward (k; n)-robust combiner for interactive
proof systems for a language L is a transparent black-box (k; n)-robust com-
biner that performs the following steps (applied on a word x ∈ L, using the
input proof systems ip1 . . . ipn):

i. Using a split-up-function F , n words x1 . . . xn are generated from x.

ii. xi ∈ L is proven using ipi.

iii. The verifier accepts if all proofs were successful.

In the following we distinguish different restrictions of a potential failure.

4.1 Interactive proof systems without zero-knowledge

We start by dropping the zero-knowledge property. Thus, we analyse inter-
active proof systems only. Usually, candidate schemes are tested for their
functionality. However, computational assumptions could be broken. There-
fore, a reasonable scenario would be to assume guaranteed completeness for
both input candidates ipi. Robust combiners for interactive proof systems
with guaranteed completeness and without zero-knowledge property are easy
to construct.

Theorem 8. There exists a third party black-box (1; 2)-robust combiner for
interactive proof systems with guaranteed completeness of the candidate sys-
tems.

Proof. The combiner’s task is to ensure soundness. The input word x ∈ L is
proven with both input protocols (ip1, ip2). The verifier accepts if and only
if both proofs are correct (i.e., the verifier is convinced in both protocols).
One of the input protocols is sound and therefore, the resulting combination
is sound.

Apart from being quite unrealistic, soundness might be guaranteed,
requiring the combiner to ensure completeness.

28

Theorem 9. There exists a third party black-box (1; 2)-robust combiner for
interactive proof systems with guaranteed soundness of the candidate systems.

Proof. The combiner’s task is to ensure completeness. The input word x ∈ L
is proven with both input protocols (ip1, ip2). The verifier accepts if at least
one of the proofs is correct. One of the input protocols is complete and
therefore, the combination is complete.

If neither completeness nor soundness is guaranteed for the broken
scheme, it seems hard to construct a transparent black-box (1; 2)-robust
combiner.

Theorem 10. There is no third party black-box (1; 2)-robust combiner for
interactive proof systems if neither completeness nor soundness is guaranteed
for the broken scheme.

Proof. Within any third party black-box combiner for interactive proof sys-
tems a number of statements are proven with the candidate schemes ipi

and in the end, the verifier has to decide whether he accepts the proof. If
accepting proofs of both ip1 and ip2 are needed to convince the verifier,
the prover is possibly unsuccessful if one candidate is not complete. If the
verifier accepts proofs of one scheme, this candidate might not be sound, and
therefore, the prover can be able to construct an accepting proof.

If no assumption apart from functionality can be made for insecure
candidates, we can still construct a robust combiner given that the majority
of the input implementations are secure.

Theorem 11. There exists a third party black-box (2; 3)-robust combiner for
interactive proof systems.

Proof. The combiner’s task is to ensure both soundness and completeness.
The input word x ∈ L is proven with all input protocols (ip1, ip2, and ip3).
The verifier accepts if at least two of the proofs are correct. Two of the input
protocols are sound and complete and therefore, the combiner is sound and
complete.

When taking the zero-knowledge property into the scope, combiners are
not that easy to obtain.

29

4.2 Zero-knowledge combiners

Theorem 10 implies the following corollary.

Corollary 6. There is no third party black-box (1; 2)-robust combiner for
zero-knowledge proof systems.

Therefore, if we consider third party black-box (1; 2)-robust combiners
for interactive proof systems, either soundness or completeness must be
guaranteed. It is reasonable to assume completeness.

To obtain the zero-knowledge property for the combiner, a simulator for
the whole transcript is needed. Only simulators for secure input protocols
are guaranteed to exist. The simulator must be able to generate transcripts
of the insecure protocols even if they leak the witness of xi ∈ L. It is unclear
how a simulator for a protocol with broken zero-knowledge property should
behave, if it even exists.

The following lemma shall give initial intuition for the problem of com-
biners for interactive proof systems.

Lemma 2. Within a straightforward combiner for zero-knowledge interactive
proof systems applied for a word x, no output of the split-up-function may be
equal to x.

Proof. If ipj is insecure for the prover, i.e., the zero-knowledge property is not
guaranteed for ipj, in the worst-case, ipj writes the witness for x ∈ L within
the transcript. No efficient simulator can generate such a transcript.

4.3 Witness-hiding combiners with guaranteed sound-
ness and completeness of the candidate systems

Definition 18. A split reduction for a language L ∈ NP consists of two
functions (computable in polynomial time) F : x 7→ (x1, x2) and F ′ : (x, w) 7→
(w1, w2). x ∈ L denotes the word and w its witness. The functions satisfy
the following properties;

• x ∈ L ⇔ x1, x2 ∈ L,

• wi is the witness for xi ∈ L, and

• wi does not give any information about w.

Lemma 3. If there is a split reduction for a language L ∈ NP then there
is a (1; 2)-robust combiner for witness-hiding interactive proof systems with
guaranteed soundness and completeness of the candidate systems.

30

Proof. Three properties need to be verified:

• Completeness and soundness: both input proofs ipi are complete and
sound, therefore, by construction, the combination is complete and
sound.

• Witness-hiding: Since wi does not give any information about w (con-
struction of the split reduction) and since at most one input proof is
not witness-hiding, the verifier is unable to obtain w from one wi.

If P 6= NP, the split reduction must not reduce the problem size (word
length |x|), by a (at least) linear factor. Otherwise, an efficient algorithm
could recursively apply this reduction and finally, by using an exponential
algorithm on the instances of logarithmic size, compute the result for x.
Furthermore, if the new instances (x1, x2) depend on the witness, i.e., F :
(x, w) 7→ (x1, x2), but there is no efficient function F̃ : x 7→ (x1, x2), then
F has to be one-way. We considered reducing an instance of 3-Coloring
[GJ90] to an instance of SubgraphIsomorphism and an instance of 3-
Coloring by randomly blowing up (and obfuscating) a graph G into a new
graph G′, then proving that G is a subgraph and that G′ is still 3-colorable.
However, a secure construction of a graph G′ of this type would imply a
OWF. Having a OWF at hand, we could construct BC and then use the
[BCC88] protocol.

Another problem we considered was SubsetSum [GJ90]. The question is
whether any subset of a given set of integers A = {a1, . . . an} sums up to B. A
natural way for a combiner would be to (randomly) split A into two distinct
subsets (A1, A2) with requested subset sum B1, B2. A broken proof system
would leak only partial information to a malicious verifier; however, this is not
enough to reach the zero-knowledge property. Possible modifications include
adding or removing elements. Unfortunately, a good compromise between the
prover’s security and the soundness of the proof scheme is difficult to reach.

4.4 Candidate systems with guaranteed completeness

Theorem 12. There is no deterministic straightforward transparent black-
box (1; 2)-robust combiner for zero-knowledge interactive proof systems with
guaranteed completeness of the candidate systems.

Proof. L is assumed to be NP-complete. We show that such a combiner
would provide an efficient solution of x ∈ L. An insecure protocol might leak
the witness for any xi ∈ L proven using it. Since the simulator has to work
for all input protocols and their permutations, it must be able to generate

31

transcripts that leak the witness for any possible insecure protocol ipj. The
combiner is deterministic and therefore, the xi generated within are always
the same. Every xi is proven with at least one protocol ipj (otherwise we
omit generating xi). The algorithm that breaks the combiner applies the
efficient simulator for different insecure protocols ipk until transcripts for all
xi are generated (since every xi is proven with at least one protocol ipj and
this protocol could be insecure, i.e., j = k, we obtain this transcript) and
extracts the witness for all transcripts.

Instead of a deterministic combiner there might be a randomised one
where the simulator could prepare a witness for a subset of the xi when it is
generated.

Theorem 13. There is no straightforward transparent black-box (1; 2)-robust
combiner for zero-knowledge interactive proof systems with guaranteed com-
pleteness of the candidate systems.

Proof. We give an efficient algorithm for the prover to cheat on the verifier.
A simulator for the combiner would have to be able to generate a transcript
where the witness for all proofs using ipi is leaked. If the prover does
know which of the ipi is insecure (the simulator does not have information
about this), the prover can cheat as follows: he applies the simulator until
it generates a protocol where the witness for all applications of the secure
protocol is leaked. Then, if the insecure protocol is unsound, the prover
can cheat about these proofs and at the same time use the witness from the
transcript for the secure proofs.

32

5 On combiners for oblivious transfer

Definition 19. A uni-directional combiner for an interactive primitive T
between A and B is a combiner that must not use any input implementation
t in the other direction, i.e., change the role of A and B within t.

Uni-directional combiners are somewhat similar to straightforward com-
biners (Definition 16 and 20).

Theorem 14. There is no uni-directional transparent black-box (1; 2)-robust
combiner for oblivious transfer if the privacy of the receiver in the first
implementation or the privacy of the sender in the second implementation
can be broken.

Proof. We use the proof of [HKN+05]. They defined oracles (length tripling
random functions {0, 1}n → {0, 1}3n) to implement OT:

f1 : (ρr, c) 7→ m1 computes the first message m1 from the
receiver’s choice bit c and randomness ρr,

f2 : (ρs, b0, b1, m1) 7→ m2 computes the answer message m2 from the
sender’s randomness ρs, his two bits bi,
and the first message, and

R : (m2, ρr, c) 7→ sc extracts the chosen bit.

In their proof, any implementation (defined with three oracles) is broken
completely, i.e., with inverters f−1

1 and f−1
2 . In this proof, we want to break

selectively the privacy of a single party per protocol. We claim that if
the role of the parties is not changed, this inverter is enough to extract
all information for the attacking party. In World1, instead of having an
inverter InvA = ((fA

1)−1, (fA
2)−1), there is only an inverter (fA

1)−1 to break
the receiver’s privacy. Similarly, in World2 we remove InvB and instead, there
is an inverter (fB

2)−1 to break the sender’s privacy. The input protocols
are used only in one direction, i.e., the sender of the combined OT acts
as sender in all implementations. The sender in World1 will never need an
inverter (fA

2)−1 to break the sender’s privacy, since he acted as sender and
always chose b0, b1 himself. Therefore, the information for the sender is the
same in the BareWorld and in World1 and therefore, any sender attack in the
BareWorld leads to an attack in World1. Similarly, the receiver in World2 will
never need (fB

1)−1 to break the receiver’s privacy, because he acted as receiver
and knows c himself. Therefore, the information for the receiver is the same
in BareWorld and in World2. Thus, any receiver attack in the BareWorld leads
to an attack in World2.

33

The impossibility proof is for combiners handling {(otsr, ots), (otr, otsr)}
only. The uniform combiner even has to accept input implementations from
P(otsr, ots)∪P(otr, otsr) = {(otsr, ots), (otsr, otr), (ots, otsr), (otr, otsr)}.

Corollary 7. There is no uni-directional transparent black-box {3, 2}-robust
uniform combiner for oblivious transfer.

This implies that there is no transparent black-box construction without
changing the roles of the sender and the receiver in at least one instance.
Therefore, in the construction of a transparent black-box {3, 2}-robust uni-
form combiner, using a “swap” operation [MPW06] is necessary.

A proof similar to Theorem 3 about straightforward combiners for com-
mitment schemes works for oblivous transfer as well.

Definition 20. A straightforward combiner for oblivious transfer is a trans-
parent black-box combiner with the following properties: Alice and Bob
prepare their inputs to a sequence of OT-protocols and execute these sub-
protocols. Then, Bob computes his output bit from the output bits of the
sub-protocols.

Theorem 15. There is no straightforward (1; 2)-robust combiner for obliv-
ious transfer if one candidate scheme is secure for the receiver, the other
candidate scheme is secure for the sender, and at least one scheme is secure
for both parties.

34

6 Conclusion

For commitment schemes, we have shown that transparent black-box (1; 2)-
robust combiners cannot exist but that black-box (1; 2)-robust combiners do
exist. Also, combiners have been constructed for which information theoretic
properties are guaranteed both for secure and insecure implementations.
Furthermore, it has been shown that third party black-box combiners do
exist if the majority of the input implementations are secure. Considering the
existence of combiners for commitment schemes, the problem has been solved
in a general way; however, it is unclear yet whether universal combiners for bit
commitment do exist. A construction similar to the one for OT in [MPW06]
seems difficult, because BC is not known to be symmetric. Furthermore, it
remains an open problem to construct a more efficient black-box combiner.

Combiners for interactive proof systems seem difficult to construct. Some
basic properties of combiners for proof systems have been presented in this
thesis. We now know that a possible transparent black-box combiner will
not be deterministic, and that any function that splits input x into multiple
instances x1 . . . xn must not rely on the witness w. However, the question is
far from being solved and further investigation is necessary.

For oblivious transfer, we have shown that a “swap” operation is necessary
to obtain a transparent black-box {3, 2}-robust uniform combiner.

35

References

[AB81] C. Asmuth and G. Blakley. An efficient algorithm for constructing
a cryptosystem which is harder to break than two other cryptosys-
tems. In Comp. and Maths. with Appls., volume 7, pages 447–450,
1981.

[BCC88] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure
proofs of knowledge. J. Comput. Syst. Sci., 37(2):156–189, 1988.

[Dam98] I. Damg̊ard. Commitment schemes and zero-knowledge protocols.
In Lectures on Data Security, Modern Cryptology in Theory and
Practice, Summer School, Aarhus, Denmark, pages 63–86, 1998.

[DK05] Y. Dodis and J. Katz. Chosen-ciphertext security of multiple
encryption. In Theory of Cryptography, Second Theory of Cryp-
tography Conference, pages 188–209, 2005.

[EG85] S. Even and O. Goldreich. On the power of cascade ciphers. ACM
Trans. Comput. Syst., 3(2):108–116, 1985.

[EGL85] S. Even, O. Goldreich, and A. Lempel. A randomized protocol
for signing contracts. Commun. ACM, 28(6):637–647, 1985.

[GJ90] M. Garey and D. Johnson. Computers and Intractability; A Guide
to the Theory of NP-Completeness. 1990.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complex-
ity of interactive proof-systems (extended abstract). In Seven-
teenth Annual ACM Symposium on Theory of Computing, pages
291–304, 1985.

[GMW91] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield
nothing but their validity or all languages in NP have zero-
knowledge proof systems. J. ACM, 38(3):691–729, 1991.

[Gol00] O. Goldreich. Foundations of Cryptography: Basic Tools. Cam-
bridge University Press, New York, NY, USA, 2000.

[Her05] A. Herzberg. On tolerant cryptographic constructions. In Topics
in Cryptology - CT-RSA 2005, The Cryptographers’ Track at the
RSA Conference, pages 172–190, 2005.

36

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudo-
random generator from any one-way function. SIAM J. Comput.,
28(4):1364–1396, 1999.

[HKN+05] D. Harnik, J. Kilian, M. Naor, O. Reingold, and A. Rosen. On
robust combiners for oblivious transfer and other primitives. In
Advances in Cryptology - EUROCRYPT 2005, pages 96–113,
2005.

[IL89] R. Impagliazzo and M. Luby. One-way functions are essential
for complexity based cryptography (extended abstract). In 30th
Annual Symposium on Foundations of Computer Science, pages
230–235, 1989.

[MP06] R. Meier and B. Przydatek. On robust combiners for private infor-
mation retrieval and other primitives. In Advances in Cryptology
- CRYPTO ’06, pages 555–569, 2006.

[MPW06] R. Meier, B. Przydatek, and J. Wullschleger. Robuster combiners
for oblivious transfer, 2006. submitted.

[Nao91] M. Naor. Bit commitment using pseudorandomness. J. Cryptol-
ogy, 4(2):151–158, 1991.

[Rab81] M. Rabin. How to exchange secrets with oblivious transfer. Tech-
nical Report 81, Aiken Computation Lab, Harvard University,
1981. http://eprint.iacr.org/2005/187.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

[Sie85] T. Siegenthaler. Design of combiners to prevent divide and con-
quer attacks. In Advances in Cryptology - CRYPTO ’85, pages
273–279, 1985.

[WW04] S. Wolf and J. Wullschleger. Oblivious transfer is sym-
metric. Cryptology ePrint Archive, Report 2004/336, 2004.
http://eprint.iacr.org/2004/336.

37

