
University of Tokyo: Advanced Algorithms Summer 2010

Lecture 9 — 17 June

Lecturer: Christian Sommer Scribe: Adrian Klein

9.1 Permutation Routing, Part 1/2

In the next two lectures we consider routing problems, where several computers communicate
with each other. We can represent the computers as nodes and their communication links
(wires) as edges in a graph. We assume that time passes in discrete time steps. Each node can
send and receive at the same time, but at each step at most one packet can be transmitted per
edge (wire). The graph (network) we consider in this lecture is the d–dimensional hypercube.

9.1.1 Hypercube

A d–dimensional hypercube can be imagined as the d–dimensional version of a square (d = 2)
or a cube (d = 3).

d = 1:
0 1

d = 2:

00

10

01

11
d = 3:

000

010

100

110

001

011

101

111

A hypercube of dimension d has n = 2d nodes (see example above for d ∈ {1, 2, 3}). We
can construct any hypercube recursively by starting with a hypercube with dimension 1, and
then iteratively combining two hypercubes of dimension d− 1 by connecting corresponding
nodes until we have the desired dimension.

Note In the d–dimensional hypercube, all the distances (number of edges between two
nodes) are at most d.

9.1.2 Permutation Routing Problem

Each computer initially has exactly one packet to be routed to its destination. Furthermore,
each computer shall receive exactly one packet. The problem thus corresponds to a per-
mutation of the address space of the computers. An example problem, denoting the initial
source with i and its destination with π(i), could look like the following (Table 9.1):

9-1

Table 9.1. An example of a permutation routing problem
i 000 001 010 011 100 101 110 111

π(i) 011 100 101 001 000 111 010 110

9.1.3 The Bit-Fixing Algorithm

A natural algorithm solving this problem is the bit-fixing algorithm: at each step exactly one
bit of the address is “fixed” (by sending the packet along an edge to another node), starting
from the leftmost. For instance, a packet routed from node (1011) to node (0000) would first
pass through node (0011) and then through node (0001) before reaching its final destination.

Question How many steps does the bit-fixing algorithm require to send n packets? The
issue is the congestion that occurs when we send more than one packet through the same
wire at the same time. This congestion occurs even though there are no critical edges (edges
with significantly higher load than others) in a hypercube.

Worst-Case Analysis

We analyze the number of steps required by the bit-fixing algorithm for a worst-case instance.
We let an adversary choose a permutation π (which our algorithm is not allowed to look
at). We prove that, for such a worst-case permutation, bit fixing requires at least Ω(

√
n/d)

rounds. First, we try to find a permutation for which bit fixing requires many rounds. As
each path has length at most d, we need to find a permutation for which the congestion is
really high. Let us assume that d is even. We split each address into two binary vectors
of length d/2. The permutation π is defined as π(ab) = ba. For example, routing from
the binary representation of 8913 (ab) to the binary representation of 53538 (ba) has the
following steps (Table 9.2):

Table 9.2. Example Routing Steps for ab = 8913
a b

00 10 00 10 11 01 00 01
10 10 00 10 11 01 00 01
11 10 00 10 11 01 00 01

...
...

11 01 00 01 11 01 00 01
...

...
11 01 00 01 00 10 00 10

b a

Note that there is a node whose address is of the form aa, meaning that the left part
equals the right part. The bit-fixing algorithm uses such a node aa for any pair ab ba.

9-2

There are at most 2d/2 =
√
n many nodes of the form aa but n packets to be routed through

these nodes. Each one of these nodes has d links and, by definition, there can be at most
one packet per link at any time step. Routing n packets through

√
n nodes, sending at most

d packets at any given time step, we obtain the lower bound of Ω(
√
n/d) rounds.

Furthermore, one can prove the same lower bound for any deterministic oblivious routing
strategy [KKT91].

9.1.4 Randomized Algorithm

We use a randomized algorithm to “protect” ourselves against worst-case instances. The idea
is to choose for each node i a random intermediate node σ(i), where we first send the packet
to, and from which we then forward the packet to the final target. The routing procedure
for the packet at node i works as follows.

1. send packet to σ(i) and wait until time 7d

2. send packet to π(i)

Theorem 9.1. With probability at least 1−1/n every packet reaches its destination in time
at most 14d.

The packet i is first routed to σ(i) and then forwarded on to π(i). Let gi = (e1, e2, ..., ek)
denote the path (sequence of edges) of a packet vi routed from i to σ(i) (the first part of the
route). We know that k is at most d (path length of the hypercube). Let Si denote the set
of packets except i also using one of these edges. These packets could potentially interfere
or cause congestion. Note that each packet in Si can cause at most one time step of delay.

Claim 1. The delay of packet i is at most |Si|.

If we can bound the size of Si then we can bound the time required for packet i to arrive
at σ(i). We define random variables to count the number of packets in Si.

Random variable (RV): Hij =

{
1 if packet j ∈ Si
0 otherwise

We then have |Si| =
∑n

j=1Hij and, consequently, E[|Si|] = E[
∑n

j=1Hij].
For an edge e, let the random variable Re denote the number of routes through e.

Claim 2. E[Re] = 1/2.

Proof: First, note that Re is the same for all e, since everything is symmetric in a hypercube.
The expected path length is d/2, the expected total path length is nd/2. The number of

directed edges in a hypercube is nd. Therefore, E[Re] =
nd
2

nd
= 1/2. �

9-3

Summing up the Re values over all the edges of a path (e1, e2, ..., ek), we obtain that

E[|Si|] = E[
n∑
j=1

Hij] ≤ E[
k∑
l=1

Rel
] =

k∑
l=1

E[Rel
] = k/2 ≤ d/2.

The expected time until packet i arrives at σ(i) is at most d+d/2. Next, we wish to bound
the probability that none of the packets arrives too late. We claim that the probability that
Pr[∃i. |Si| > 6d] is low. To prove this claim, we use tail inequalities. Note that the Re’s are
not independent. While being convenient to compute expectations, we may not use the Re’s
in tail inequalities that require independency of the variables.

Markov Inequality For a random variable X > 0 and for a parameter t > 0 we have

Pr[X ≥ t] ≤ E[X]/t.

Proof

E[X] =
∑
x

xPr[X = x] ≥
∑
x≥t

xPr[X = x] ≥ t
∑
x≥t

Pr[X = x] = tPr[X ≥ t].

Chernoff Inequality Let random variables Xi > 0 independent. Then we have the fol-
lowing statement on their sum X := X1 + . . . Xn. Let µ = E[X]. For any ε > 0,

Pr[X > (1 + ε)µ] <

(
eε

(1 + ε)1+ε

)µ
.

Note that the Xi must be independent. We now bound Pr[|Si| > 6d] using |Si| =
∑n

j=1Hij,
the Chernoff inequality, and the fact that the Hij are independent. We may also use the
fact that E[|Si|] ≤ d/2. We have that Pr[|Si| > 6d] < 2−6d. Therefore, for 2d packets, the
probability for one of them to require more than d+6d steps is at most 2−5d (using the union
bound). Including the second phase, the overall time is at most 7d+ 7d.

9-4

Bibliography

[KKT91] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight bounds for
oblivious routing in the hypercube. Theory of Computing Systems, 24(1):223–232,
1991.

5

